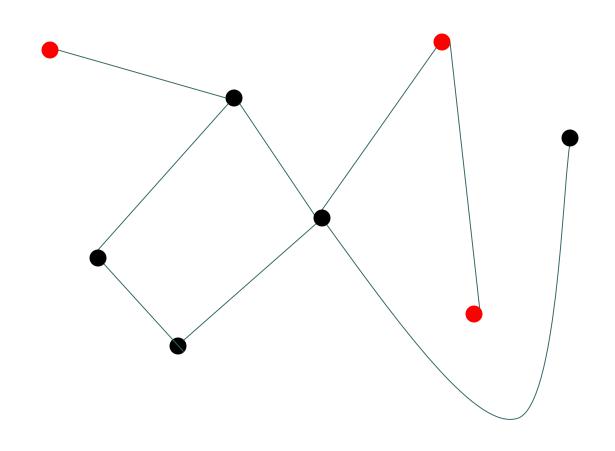
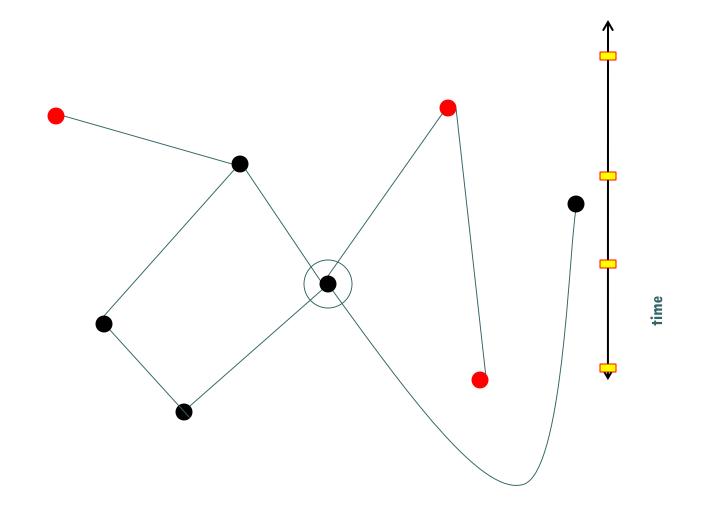


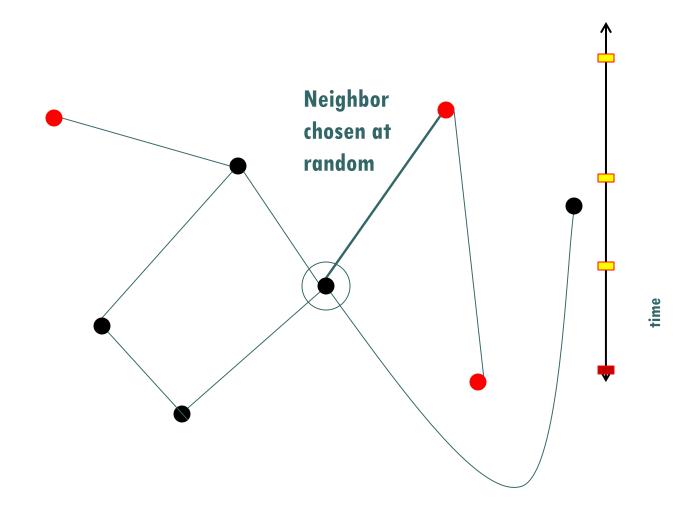
MEAN FIELD CONDITIONS FOR COALESCING RANDOM WALKS

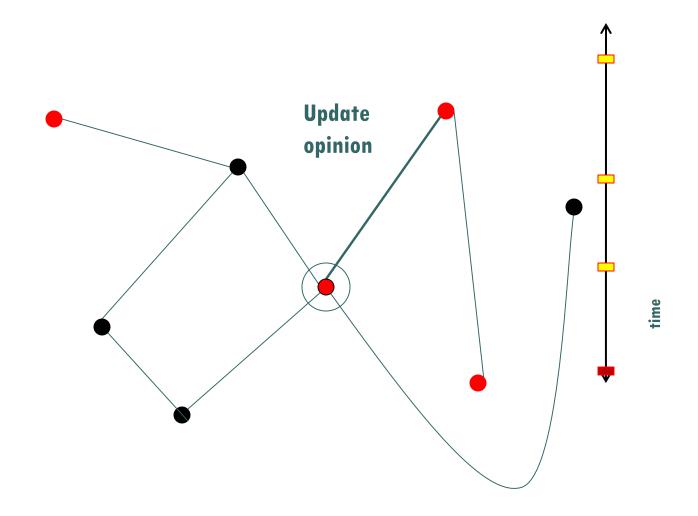
Roberto Imbuzeiro Oliveira IMPA, Rio de Janeiro SPA 2014 (Buenos Aires) Ann. Prob. 2013

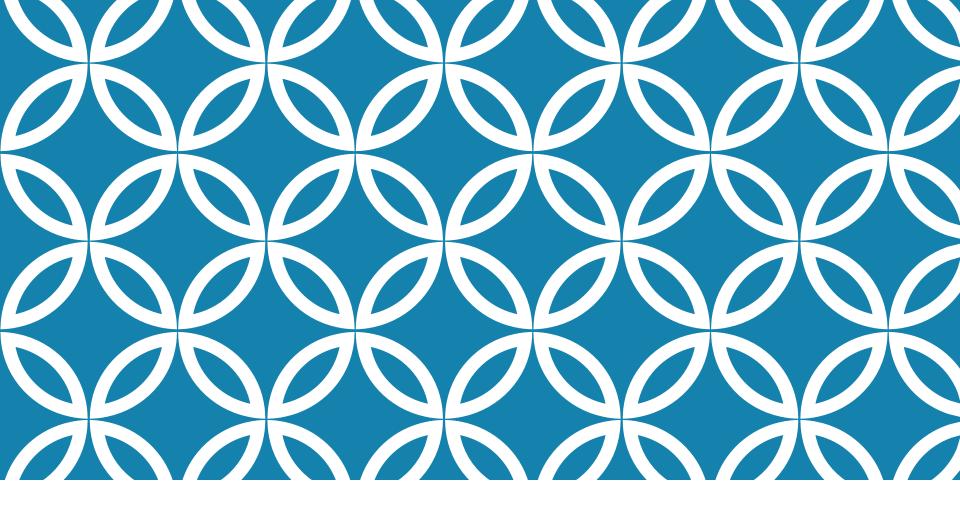


WHAT IS THE VOTER MODEL? Arrival process (Poisson) time



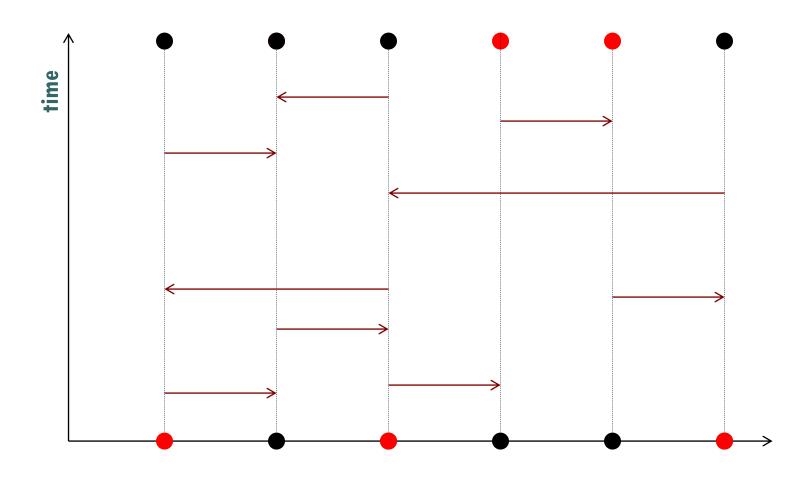


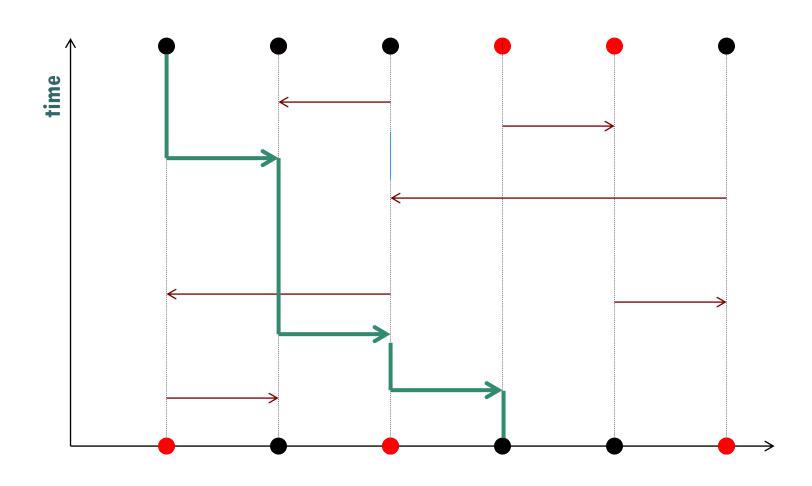


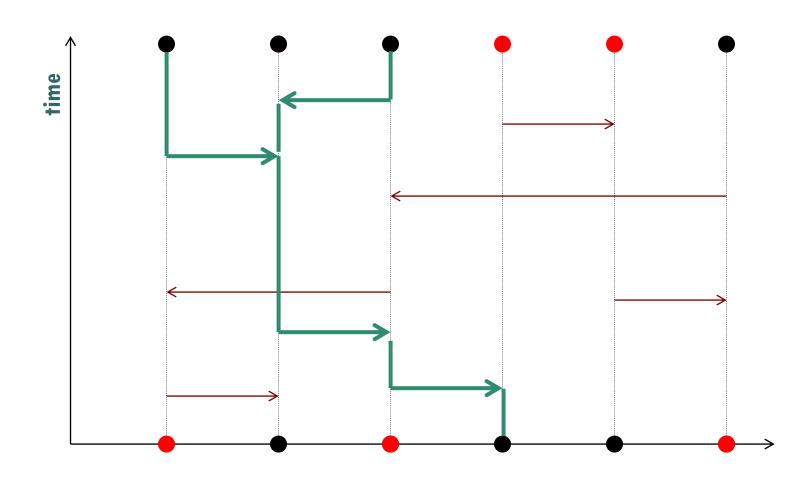


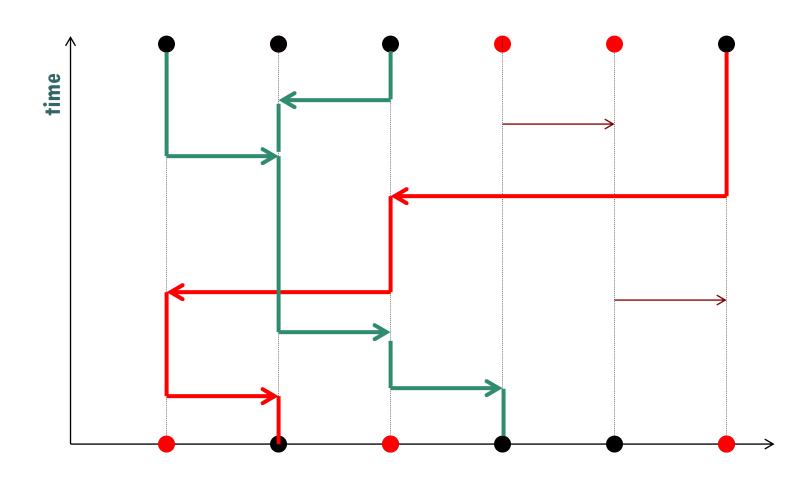
VOTERS, RANDOM WALKERS, AND DUALITY

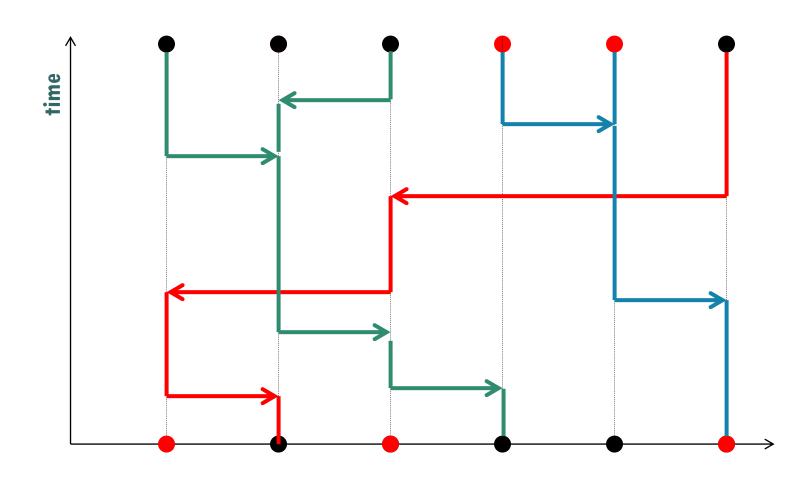
The original motivation for studying coalescing random walks is the <u>voter model</u>.











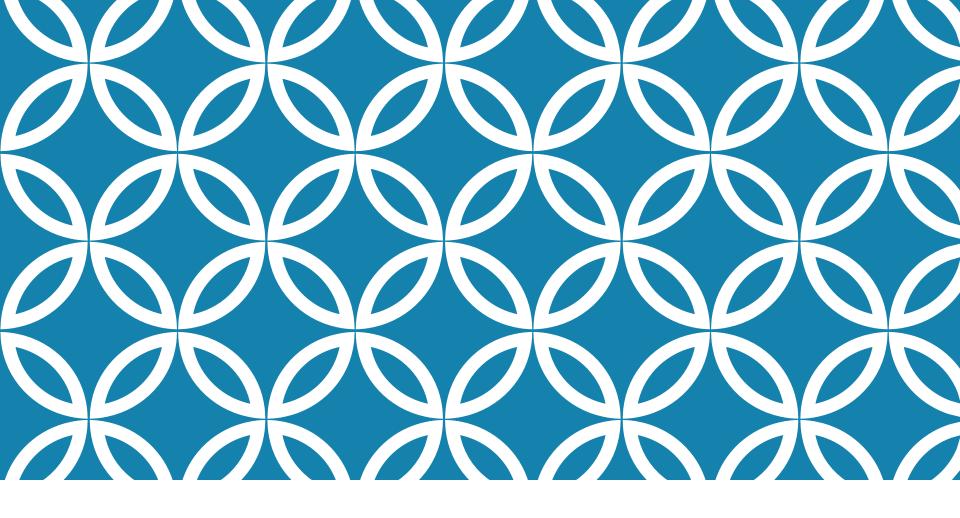
The upshot is that the voter model is dual to

Coalescing random walks,

the main subject of this talk. Will discuss:

C:= full coalescence time.

Results extend to voters with i.i.d. initial opinions.



MEAN FIELD BEHAVIOR FOR FULL COALESCENCE

The case of the complete graph is easy. Other cases turn out to be similar.

System of $\bf n$ coalescing random walks on a complete graph $\bf K_n$. (ie. all transition rates equal to 1).

System of $\bf n$ coalescing random walks on a complete graph $\bf K_n$. (ie. all transition rates equal to 2).

Time to move from
$$k$$
 to $k-1$ particles:

$$\mathbb{P}(k) = e^{-\binom{k}{2}}t$$

System of $\bf n$ coalescing random walks on a complete graph $\bf K_n$. (ie. all transition rates equal to 2).

Time to move from
$$k$$
 to $k-1$ particles:

$$P(k) = e^{-\binom{k}{2}}t$$
i.e. exponential with mean $\binom{h}{2}$.

System of $\bf n$ coalescing random walks on a complete graph $\bf K_n$. (ie. all transition rates equal to 2).

$$C = \sum_{k=2}^{n} Z_{k}$$

$$\{Z_{k}\}_{h} \text{ independent, } Z_{h} =_{d} exp\left(\frac{1}{2}\right).$$

System of \mathbf{n} coalescing random walks on a complete graph $\mathbf{K}_{\mathbf{n}}$. (ie. all transition rates equal to 2).

$$C = \sum_{k=2}^{\infty} Z_k$$

$$E(C) \sim 2 = 2 E(Meet of 2)$$

A RESULT BY COX

Cox'91: Consider CRW based on simple random walk in

 $(Z_n)^d$

where d is at least 2. Then:

A RESULT BY COX

Cox'91: Consider CRW based on simple random walk in

$$(Z_n)^d$$

where d is at least 2. Then:

$$\frac{C}{M} \stackrel{n \to +\infty}{=} \frac{Z}{2} \frac{Z_{k}}{k \geq 2}$$

A RESULT BY COX

Cox'91: Consider CRW based on simple random walk in $(Z_n)^d$ where **d** is at least 2. Then:

A PROBLEM FROM ALDOUS AND FILL

<u>Prove that</u> this is universal over large transitive graphs with <u>relaxation time small.</u>

A PROBLEM FROM ALDOUS AND FILL

A PROBLEM FROM ALDOUS AND FILL

<u>Prove that</u> this is universal over large transitive graphs with <u>relaxation time</u> smaller than expected meeting time.

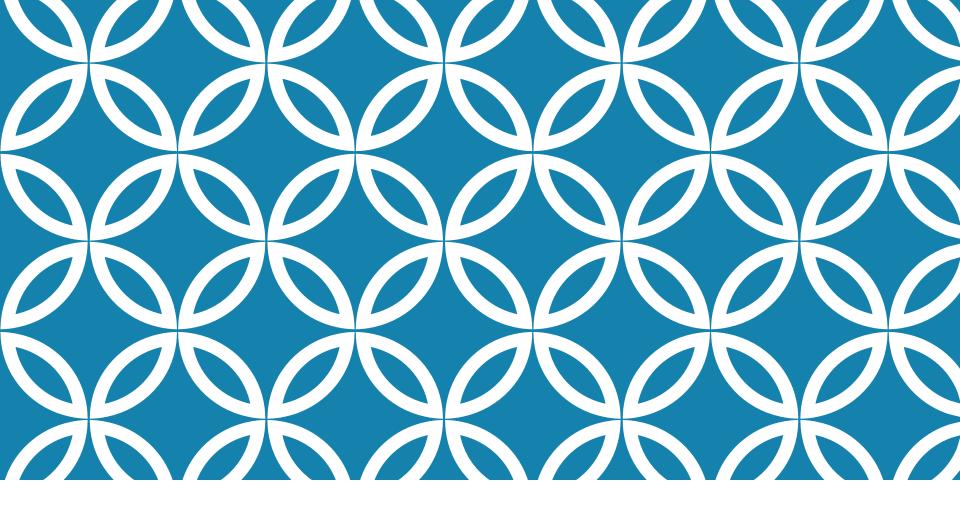
Some assumption is needed: no mean field behavior for star graphs or one-dimensional cycles.

A MORE GENERAL PROBLEM BY DURRETT

In Random Graph Dynamics Durrett studies the same kind of problem over certain random graphs.

Those have **power law degrees** and are "very non transitive" in many ways.

Nevertheless, D. obtains some partial results in the direction of <u>universality of mean field behavior</u>.



MAIN RESULTS

Mean field behavior is indeed very general. We give two results.

A THEOREM FOR TRANSITIVE GRAPHS

Duly: sequence of reversible, transitive chains on finite spaces. Mns. expected meeting time of 2 indep. Qn-walks

A THEOREM FOR TRANSITIVE GRAPHS

Duly: sequence of reversible, transitive chains on finite graces. [triking time] expected meeting time of 2 indep. Qn-walks

A THEOREM FOR TRANSITIVE CHAINS

$$\frac{Cn}{Mn} \Rightarrow \sum_{n \to +\infty} \sum_{k \ge 2} \frac{2k}{k}$$
whenever $\lim_{n \to +\infty} \frac{1}{2} \sum_{k \ge 2} \frac{2k}{m}$

A THEOREM FOR TRANSITIVE CHAINS

$$\frac{Cn}{Mn} \xrightarrow{n \to +\infty} \sum_{k \geq 2} \frac{Z_k}{k \geq 2}$$
whenever $\underbrace{t_{mix,n}}_{Mn} \xrightarrow{n \to +\infty} 0$

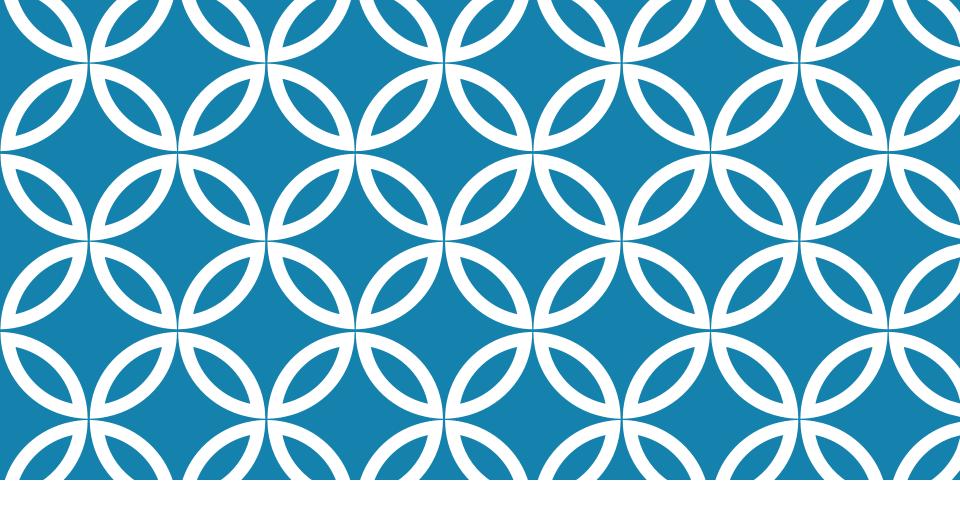
$$\underbrace{LAldous/Fill: t_{rel,n}/mn}_{Mn} \xrightarrow{n \to +\infty} 0$$

A THEOREM FOR GENERAL CHAINS

We also have a theorem not requiring transitivity or reversibility, with messier assumptions.

It covers the random graphs of Durrett + many other examples (eg. supercritical percolation in 3 or more dimensions).

There certainly is room for improvement here.



MAIN PROOF IDEAS

Exponential hitting times, with good error bounds + quantiles + control of big bang phase.

THE THEOREM FOR TRANSITIVE CHAINS

$$\frac{Cn}{Mn} \Rightarrow \frac{\sum Z_k}{n \rightarrow +\infty} \frac{\sum Z_k}{k \geq 2}$$
whenever $\frac{t_{mix,n}}{Mn} \stackrel{n \rightarrow +\infty}{\longrightarrow} 0$

COMPARE WITH COMPLETE GRAPH

The random variables Z_k have a clearly defined meaning in the complete graph case.

Time to move from
$$k$$
 to $k-1$ particles:
$$P(k) = e^{-\binom{k}{2}}t$$

COMPARE WITH COMPLETE GRAPH

The random variables Z_k have a clearly defined meaning in the complete graph case.

CONNECTION WITH HITTING TIMES

k random walks => one random
walk on

h (product)

CONNECTION WITH HITTING TIMES

k random walks => one random

on V

walk on

Vh (product)

The = 1st coales => Hitting time of

cence among k

$$\Delta_{k} = 16il_{i=1}i$$
 = 316icjsky

 $\Delta_{k} = 16il_{i=1}i$ = 316icjsky

Well-known "metatheorem" (Aldous, Aldous/Brown,...).

$$P = chain on \Omega$$
, $A \subset \Sigma$ with T stationary, $F_{TT}(\Sigma_A) >> t_{mix}$.

Well-known "metatheorem" (Aldous, Aldous/Brown,...).

P= chain on
$$\Re$$
, $A \subset \Re$ with $\Re tationary, $E_{\pi}(\Upsilon_{A}) \gg t_{mix}$.

 $\Re (\Upsilon_{A} + \Upsilon_{T}(\Upsilon_{A}) \gg t) \approx e^{-t}$$

$$T_{k} = 1^{st} coales \Rightarrow Hilting time of$$

cence among k

$$\Delta_{k} = 1(ki)i_{i=1} : \exists 1 \in i \in j \in k \setminus i_{i=1} : \exists$$

T_K =
$$1^{5t}$$
 coales \Rightarrow Hitting time of cence among k $\Delta_k = 1(x_i)_{i=1}^n$: $\exists_{x_i = x_j}^{1 \le i \le j \le k}$

($k=2$) \Rightarrow $\exists_{T_i} (T_i) = M_n >> t_{mix}$
 $\exists_{T_i} (T_i) = M_n >> t_{mix}$

T_K = 1st coales
$$\Rightarrow$$
 Hitting time of conce among k $\Delta_k = 16ii_{i=1}i$ $\exists 16i6_{j} \in M_k$ (larger k)

 P_T (T_K f_T (T_a) > t) $\approx e^{-t}$

$$\frac{C}{M} = \sum_{k \geq 2}$$

WHAT IS MISSING!

$$C = \sum_{h \geqslant 2} T_{h} = \sum_{h \geqslant 2} Z_{h}$$

$$EXPECTATION OF T_{2}$$

$$A_{k} = \{(x_{k})_{k \leqslant k}, \exists_{k \leqslant k}\}$$

EXPONEN-

 $\frac{C}{m} = \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{2k}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{2k}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$ $= \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m} = \sum_{k \ge 2} \frac{1}{m}$

Problem #1

Better estimates for tail of Tk.

EXPONEN-

 $\frac{C}{M} = \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{2h}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{2h}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$ $= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M$

Problem #1

Better estimates for tail of Tk.

EXPONEN-

 $\frac{C}{M} = \sum_{h \geqslant 2} \frac{\sum_{h \geqslant$

Problem # 2

Need to consider non-stationary starts.

EXPONEN.

$$\frac{C}{m} = \sum_{h \ge 2} \frac{1}{m} = \sum_{h \ge 2} \frac{1}{2h}$$

$$= \sum_{h \ge 2} \frac{1}{m} = \sum_{h \ge 2} \frac{1}{2h}$$

$$= \sum_{h \ge 2} \frac{1}{m} = \sum_{h \ge 2} \frac{1}{2h}$$

$$= \sum_{h \ge 2} \frac{1}{2h}$$

EXPONEN.

Problem # 3 Must show $E(T_n) \approx$

$$\frac{C}{M} = \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{2h}$$

$$= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{2h}$$

$$= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$$

$$= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$$

$$= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$$

$$= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M}$$

$$= \sum_{h \geqslant 2} \frac{1}{M} = \sum_{h \geqslant 2} \frac{1}{M} =$$

EXPONEN-

Problem # 4 / A "big" => not exp.

(Big Bang)

EXPONENTIAL HITTING TIMES (NEW)

Sharper theorem.

P= chain on
$$\Re$$
, $A \subset \Re$ with $\Re tationary; $E = O(\left(\frac{t_{mix}}{E_{\Pi}(\tau_{A})}\right)^{2_{3}}) < 1$

1) $\Re \left(\frac{\tau_{A}}{E_{\Pi}(\tau_{A})} > t\right) \leq (1+\epsilon)e^{-\frac{t_{A}}{1+\epsilon}}$$

EXPONENTIAL HITTING TIMES (NEW)

Sharper theorem.

P= chain on
$$\Re$$
, $A \subset \Re$ with $\Re \operatorname{stationary}$; $E = \Re \left(\frac{\operatorname{tanix}}{\operatorname{En}(\operatorname{Ta})}\right)^{\frac{1}{2}} < 1$

2) $\operatorname{Px}\left(\operatorname{Tan}(\operatorname{Ta})>1\right) \geq \left(1-\operatorname{E}\right)e^{-\frac{1}{1-\operatorname{E}}}$

EXPONENTIAL HITTING TIMES (NEW)
$$\mathcal{E} = \mathcal{E} + \mathcal{P}_{\mathcal{K}} \left(\mathcal{T}_{\mathcal{A}} < \mathcal{E} + \mathcal{F}_{\mathcal{T}_{\mathcal{A}}} \right)$$
Sharper theorem.

P= chain on
$$\Re$$
, $A \subset \Re$ with $\Re \operatorname{stationary}$; $E = \Re \left(\frac{\operatorname{tanix}}{\operatorname{En}(\operatorname{Ta})} \right) < 1$

2) $\Re \left(\operatorname{Tanix} \right) \geq (1-\varepsilon) e^{-\frac{1}{1-\varepsilon}}$

EXPONENTIAL HITTING TIMES (NEW)

Sharper theorem.

P= chain on
$$\Re$$
, $A \subset \Re$ with $\Re tationary; $E = \Re \left(\frac{t_{mix}}{E_{\pi}(\tau_{A})}\right)^{2}$ (13) $\Re t_{\pi}(\tau_{A})$ $\Re t_{\pi}(\tau_{A})$ $\Re t_{\pi}(\tau_{A})$ $\Re t_{\pi}(\tau_{A})$ $\Re t_{\pi}(\tau_{A})$$

APPLICATION TO E(T_K)

Recall Th = Hitting time of

$$\Delta_{L} = \{(x_{i})_{i=1}^{h} : \exists i \in j \}$$

$$x_{i} = x_{j}$$

APPLICATION TO E(T_K)

Recall
$$T_h = Hilting time of$$

$$\Delta_L = \{(x_i)_{i=1}^h : \exists i = j \atop x_i = x_j \}$$

$$=) P_{+}(T_h \leq \mathcal{E}_{+}(T_2)) \leq \binom{h}{2} \leq$$

APPLICATION TO E(T_k)

 $=) \mathbb{P}_{\mathbb{T}}(T_{1} \leq \mathbb{E}(T_{2})) \leq h_{2} \leq 1$

APPLICATION TO E(T_K)

$$\mathbb{P}_{T}\left(T_{k} \leqslant \mathbb{E}\mathbb{E}\left(T_{2}\right)\right) \gtrsim \left(\frac{1}{2}\right) \lesssim$$

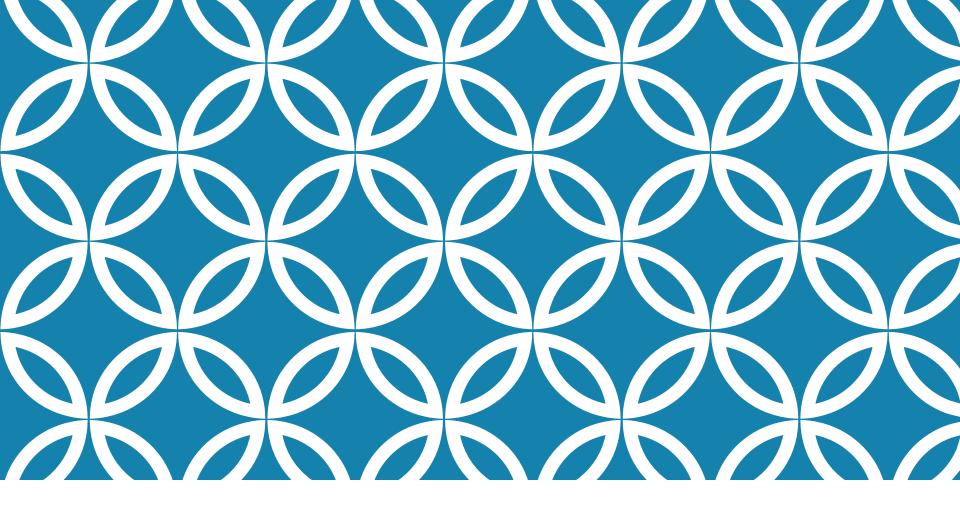
$$-O(k^{4})\mathbb{P}_{T}\left(T_{2}^{1/2} \leqslant \mathbb{E}\mathbb{E}\left(T_{2}\right), T_{2}^{2/3} \leqslant \mathbb{E}\mathbb{E}\left(T_{2}\right)\right)$$

BOUNDING CORRELATIONS (TRANSITIVE)

$$\mathbb{P}_{\mathbb{P}^{3}}(T^{1,2} \leq t, T^{2,3} \leq t)$$

$$\leq 2 \mathbb{P}_{\mathbb{P}^{3}}(T^{1,2} \leq t)$$

$$\text{(on black board!)}$$



THE END

Thanks for your attention.

Here is a <u>link to the paper</u>.