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Abstract. We start with analytic geometry and the theory of
conic sections. Then we treat the classical topics in differential
geometry such as the geodesic equation and Gaussian curvature.
Then we prove Gauss’s theorema egregium and introduce the ab-
stract viewpoint of modern differential geometry.



Contents

Chapter 1. Analytic geometry 9
1.1. Sphere, projective geometry 9
1.2. Circle, isoperimetric inequality 9
1.3. Relativity theory 10
1.4. Linear algebra, index notation 11
1.5. Einstein summation convention 11
1.6. Matrix as a linear map 12
1.7. Symmetrisation and skew-symmetrisation 13
1.8. Matrix multiplication in index notation 14
1.9. The inverse matrix, Kronecker delta 14
1.10. Eigenvalues, symmetry 15
1.11. Finding an eigenvector of a symmetric matrix 17

Chapter 2. Self-adjoint operators, conic sections 19
2.1. Trace of product in index notation 19
2.2. Inner product spaces and self-adjoint operators 19
2.3. Orthogonal diagonalisation of symmetric matrices 20
2.4. Classification of conic sections: diagonalisation 21
2.5. Classification of conics: trichotomy, nondegeneracy 22
2.6. Quadratic surfaces 23
2.7. Jacobi’s criterion 24

Chapter 3. Hessian, curves, and curvature 27
3.1. Exercise on index notation 27
3.2. Hessian, minima, maxima, saddle points 27
3.3. Parametric representation of a curve 28
3.4. Implicit representation of a curve 29
3.5. Implicit function theorem 30
3.6. Unit speed parametrisation 30
3.7. Geodesic curvature 31
3.8. Osculating circle of a curve 31
3.9. Radius of curvature 32
3.10. Examples of second order operators 33
3.11. Geodesic curvature for an implicit curve 34

3



4 CONTENTS

3.12. Curvature of graph of function 34
3.13. Existence of arclength 35

Chapter 4. Total curvature, lattices, tori 37
4.1. Index notation 37
4.2. Curvature with respect to an arbitrary parameter 37
4.3. Jordan curves in the plane and parameter θ 38
4.4. Curvature expressed in terms of θ(s) 39
4.5. Convexity 40
4.6. Total curvature of a convex Jordan curve 41
4.7. Signed curvature k̃α of Jordan curves in the plane 42

Chapter 5. Rotation index of a closed curve, lattices 45
5.1. Rotation index of a closed curve in the plane 45
5.2. Connected components of curves 45
5.3. Circle via the exponential map 46
5.4. Lattice, fundamental domain 47
5.5. Lattices in the plane 48
5.6. Successive minima of a lattice 49
5.7. Gram matrix 50
5.8. Sphere and torus as topological surfaces 50

Chapter 6. Hermite constant, Clairaut’s relation 53
6.1. Hermite constant 53
6.2. Standard fundamental domain 53
6.3. Conformal parameter τ 54
6.4. Spherical coordinates 55
6.5. Great circles parametrized and implicit 56
6.6. Clairaut’s relation 58
6.7. Proof of Clairaut’s relation 59

Chapter 7. Local geometry of surfaces; first fundamental form 63
7.1. Local geometry of surfaces 63
7.2. Regular surface; Jacobian 63
7.3. First fundamental form of a surface 64
7.4. Plane, cylinder 66
7.5. Surfaces of revolution 66
7.6. Pseudosphere 68
7.7. Einstein summation convention 68
7.8. Measuring length of curves on surfaces 68
7.9. The symbols Γkij of a surface 69

7.10. Basic properties of the symbols Γkij 70

7.11. Intrinsic nature of the symbols Γkij 71



CONTENTS 5

7.12. Symbols Γkij for a surface of revolution 72

Chapter 8. Conformally equivalent metrics, geodesic equation 75
8.1. Metrics conformal to the standard flat metric 75
8.2. Geodesics on a surface 76
8.3. Geodesic equation 76
8.4. Geodesics on a surface of revolution 78
8.5. Polar, cylindrical, spherical coordinates; integration 80
8.6. Measuring area on surfaces 82

Chapter 9. Directional derivative and Weingarten map 83
9.1. Directional derivative 83
9.2. Extending vector field along surface to open set in R3 84
9.3. Hessian of a function at a critical point 85
9.4. From Hessian to Weingarten map 85
9.5. Weingarten map of sphere and cylinder 87
9.6. Coefficients Lij of Weingarten map 88
9.7. Gaussian curvature 89

Chapter 10. Second fundamental form, theorema egregium 91
10.1. Second fundamental form 91
10.2. Geodesics and second fundamental form 92
10.3. Calculus of variations and the geodesic equation 93
10.4. Three formulas for Gaussian curvature 96
10.5. Principal curvatures 97

Chapter 11. Minimal surfaces, Theorema egregium 99
11.1. Minimal surfaces 99
11.2. Introduction to theorema egregium; intrinsic vs extrinsic 101
11.3. Riemann’s formula 102
11.4. Preliminaries to the theorema egregium 103
11.5. An identity involving the Γkij and the Lij 104
11.6. The theorema egregium of Gauss 105
11.7. The Laplacian formula for Gaussian curvature 106

Chapter 12. Gauss–Bonnet theorem 109
12.1. Binet–Cauchy identity 109
12.2. Area elements of the surface and of the sphere 109
12.3. Proof of Gauss-Bonnet theorem 111
12.4. Euler characteristic 112

Chapter 13. Duality in algebra, calculus, and geometry 113
13.1. Duality in linear algebra 113
13.2. Duality in calculus; derivations 114



6 CONTENTS

13.3. Constructing bilinear forms out of 1-forms 116
13.4. First fundamental form 117
13.5. Dual bases in differential geometry 117
13.6. Uniformisation theorem 118
13.7. Surfaces of revolution in isothermal coordinates 119

Chapter 14. Tori, residues 121
14.1. More on dual bases 121
14.2. Conformal parameter τ of tori of revolution 122
14.3. θ-loops and φ-loops on tori of revolution 123
14.4. Tori generated by round circles 124
14.5. Conformal parameter of tori of revolution, residues 125

Chapter 15. Loewner’s systolic inequality 127
15.1. Definition of systole 127
15.2. Loewner’s torus inequality 131
15.3. Loewner’s inequality with defect 132
15.4. Computational formula for the variance 133
15.5. An application of the computational formula 133
15.6. Conformal invariant σ 134
15.7. Fundamental domain and Loewner’s torus inequality 134
15.8. Boundary case of equality 135

Chapter 16. Manifolds and global geometry 137
16.1. Global geometry of surfaces 137
16.2. Definition of manifold 138
16.3. Sphere as a manifold 139
16.4. Dual bases 139
16.5. Jacobian matrix 140
16.6. Area of a surface, independence of partition 140
16.7. Conformal equivalence 142
16.8. Geodesic equation 143
16.9. Closed geodesic 144
16.10. Existence of closed geodesic 144
16.11. Surfaces of constant curvature 145
16.12. Real projective plane 145
16.13. Simple loops for surfaces of positive curvature 146
16.14. Successive minima 147
16.15. Flat surfaces 147
16.16. Hyperbolic surfaces 148
16.17. Hyperbolic plane 149
16.18. Loops, simply connected spaces 150
16.19. Orientation on loops and surfaces 151



CONTENTS 7

16.20. Cycles and boundaries 151
16.21. First singular homology group 153
16.22. Stable norm in 1-dimensional homology 153
16.23. The degree of a map 154
16.24. Degree of normal map of an imbedded surface 155
16.25. Euler characteristic of an orientable surface 156
16.26. Gauss-Bonnet theorem 156
16.27. Change of metric exploiting Gaussian curvature 157
16.28. Gauss map 157
16.29. An identity 158
16.30. Stable systole 159
16.31. Free loops, based loops, and fundamental group 159
16.32. Fundamental groups of surfaces 160

Chapter 17. Pu’s inequality 163
17.1. Hopf fibration h 163
17.2. Tangent map 163
17.3. Riemannian submersion 164
17.4. Riemannian submersions 164
17.5. Hamilton quaternions 165
17.6. Complex structures on the algebra H 166

Chapter 18. Approach using energy-area identity 167
18.1. An integral-geometric identity 167
18.2. Two proofs of the Loewner inequality 168
18.3. Hopf fibration and the Hamilton quaternions 170
18.4. Double fibration of SO(3) and integral geometry on S2 171
18.5. Proof of Pu’s inequality 173
18.6. A table of optimal systolic ratios of surfaces 173

Chapter 19. A primer on surfaces 175
19.1. Hyperelliptic involution 175
19.2. Hyperelliptic surfaces 177
19.3. Ovalless surfaces 177
19.4. Katok’s entropy inequality 179

Bibliography 183





CHAPTER 1

Analytic geometry

These notes are based on a course taught at Bar Ilan University.
After dealing with classical geometric preliminaries including the the-
orema egregium of Gauss, we present new geometric inequalities on
Riemann surfaces, as well as their higher dimensional generalisations.

We will first review some familiar objects from classical geometry
and try to point out the connection with important themes in modern
mathematics.

1.1. Sphere, projective geometry

The familiar 2-sphere S2 is a surface that can be defined as the
collection of unit vectors in 3-sphace:

S2 =
{
(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1
}
.

Definition 1.1.1. A great circle is the intersection of the sphere
with a plane passing through the origin.

The equator is an example of a great circle.

Definition 1.1.2. The great circle distance on S2 is the distance
measured along the arcs of great circles.

Namely, the distance between a pair of points p, q ∈ S2 is the length
of the smaller of the two arcs of the great circle passing through p and q.

The antipodal quotient gives the real projective plane RP2, a space
of fundamental importance in projective geometry.

1.2. Circle, isoperimetric inequality

The familiar unit circle in the plane, defined to be the locus of the
equation

x2 + y2 = 1

in the (x, y)-plane. The circle solves the isoperimetic problem in the
plane. Namely, consider simple (non-self-intersecting) closed curves of
equal perimeter, for instance a polygon.1

1metzula
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10 1. ANALYTIC GEOMETRY

Among all such curves, the circle is the curve that encloses the
largest area. In other words, the circle satisfies the boundary case of
equality in the following inequality, known as the isoperimetric inequal-
ity.

Theorem 1.2.1 (Isoperimetric inequality). Every Jordan curve in
the plane satisfies the inequality

(
L

2π

)2

− A

π
≥ 0,

with equality if and only if the curve is a round circle.

2

1.3. Relativity theory

In relativity theory, one uses a framework similar to classical differ-
ential geometry, with a technical difference having to do with the basic
quadratic form being used. Nonetheless, some of the key concepts, such
as geodesic and curvature, are common to both approaches.

In the first approximation, one can think of relativity theory as the
study of 4-manifolds with a choice of a “light cone”3 at every point.

Einstein gave a strong impetus to the development of differential
geometry, as a tool in studying relativity. We will systematically use
Einstein’s summation convention (see below).

2The round circle is the subject of Gromov’s filling area conjecture.

Definition 1.2.2. The Riemannian circle of length 2π is a great circle of the
unit sphere, equipped with the great-circle distance.

The emphasis is on the fact that the distance is measured along arcs rather
than chords (straight line intervals).

For all the apparent simplicity of the the Riemannian circle, it turns out that
it is the subject of a still-unsolved conjecture of Gromov’s, namely the filling area
conjecture.

A surface with a single boundary circle will be called a filling of that circle.
We now consider fillings of the Riemannian circles such that the ambient distance
does not diminish the great-circle distance (in particular, filling by the unit disk is
not allowed).

Conjecture 1.2.3 (M. Gromov). Among all fillings of the Riemannian circles
by a surface, the hemisphere is the one of least area.

3konus ha’or
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1.4. Linear algebra, index notation

Let Rn denote the Euclidean n-space. Its vectors will be denoted

v, w ∈ R
n.

Let B be an n by n matrix. There are two ways of viewing such a
matrix, either as a linear map or as a bilinear form (cf. Remarks 1.4.1
and 1.6). Developing suitable notation to capture this distinction helps
simplify differential-geometric formulas down to readable size, and ul-
timately to motivate the crucial distinction between a vector and a
covector.

Remark 1.4.1 (Matrix as a bilinear form B(v, w)). Consider a
bilinear form

B(v, w) : Rn × R
n → R, (1.4.1)

sending the pair of vectors (v, w) to the real number vtBw. Here vt is
the transpose of v. We write

B = (bij)i=1,...,n; j=1,...,n

so that bij is an entry while (bij) denotes the matrix.

For example, in the 2 by 2 case,

v =

(
v1

v2

)
, w =

(
w1

w2

)
, B =

(
b11 b12
b21 b22

)
.

Then

Bw =

(
b11 b12
b21 b22

)(
w1

w2

)
=

(
b11w

1 + b12w
2

b21w
1 + b22w

2

)
.

Now the transpose vt = (v1 v2) is a row vector, so

B(v, w) = vtBw

= (v1 v2)

(
b11w

1 + b12w
2

b21w
1 + b22w

2

)

= b11v
1w1 + b12v

1w2 + b21v
2w1 + b22v

2w2,

and therefore vtBw =
∑2

i=1

∑2
j=1 bijv

iwj. We would like to simplify
this notation by deleting the summation symbols “Σ”, as follows.

1.5. Einstein summation convention

The following useful notational device was originally introduced by
Albert Einstein.
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Definition 1.5.1. The rule is that whenever a product contains a
symbol with a lower index and another symbol with the same upper
index, take summation over this repeated index.

Using this notation, the bilinear form (1.4.1) defined by the ma-
trix B can be written as follows:

B(v, w) = bijv
iwj,

with implied summation over both indices.

Definition 1.5.2. Let B be a symmetric matrix. The associ-
ated quadratic form is a quadratic form associated with a bilinear
form B(v, w) by the following rule:

Q(v) = B(v, v).

Let v = viei where {ei} is the standard basis of Rn.

Lemma 1.5.3. The associated quadratic form satisfies

Q(v) = bijv
ivj.

Proof. To compute Q(v), we must introduce an extra index j :

Q(v) = B(v, v) = B(viei, v
jej) = B(ei, ej)v

ivj = bijv
ivj. (1.5.1)

�

Definition 1.5.4. The polarisation formula is the following for-
mula:

B(v, w) =
1

4
(Q(v + w)−Q(v − w)).

The polarisation formula allows one to reconstruct the bilinear form
from the quadratic form, at least if the characteristic is not 2. For an
application, see section 13.3.

1.6. Matrix as a linear map

Consider a map

B : Rn → R
n, v 7→ Bv.

In order to distinguish this case from the case of the bilinear form, we
will raise the first index: write B as

B = (bij)i=1,...,n; j=1,...,n

where it is important to s t a g g e r the indices, meaning that we do
not put j under i as in

bij,
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but, rather, leave a blank space (in the place were j used to be), as in

bij.

Let v = (vj)j=1,...,n and w = (wi)i=1,...,n. Then the equation w = Bv
can be written as a system of n scalar equations,

wi = bijv
j for i = 1, . . . , n

using the Einstein summation convention (here the repeated index is j).

Definition 1.6.1. The formula for the trace Tr(B) = b11 + b22 +
· · ·+ bnn in Einstein notation becomes

Tr(B) = bii

(here the repeated index is i).

1.7. Symmetrisation and skew-symmetrisation

Let B = (bij). Its symmetric part S is by definition

S =
1

2
(B +Bt) =

(1
2
(bij + bji)

)
i=1,...,n
j=1,...,n

,

while the skew-symmetric part A is

A =
1

2
(B − Bt) =

(1
2
(bij − bji)

)
i=1,...,n
j=1,...,n

.

Note that B = S + A.
Another useful notation is that of symmetrisation

b{ij} =
1

2
(bij + bji) (1.7.1)

and antisymmetrisation

b[ij] =
1

2
(bij − bji). (1.7.2)

Lemma 1.7.1. A matrix B = (bij) is symmetric if and only if for
all indices i and j one has b[ij] = 0.

Proof. We have b[ij] = 1
2
(bij − bji) = 0 since symmetry of B

means bij = bji. �
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1.8. Matrix multiplication in index notation

The usual way to define matrix multiplication is as follows. A
triple of matrices A = (aij), B = (bij), and C = (cij) satisfy the
product relation C = AB if, introducing an additional dummy index k

(cf. formula (1.5.1)), we have the relation cij =
∑

k

aikbkj.

Example 1.8.1 (Skew-symmetrisation of matrix product). By com-
mutativity of multiplication of real numbers, aikbkj = bkjaik. Then the
coefficients c[ij] of the skew-symmetrisation of C = AB satisfy

c[ij] =
∑

k

bk[jai]k.

Here by definition

bk[jai]k =
1

2
(bkjaik − bkiajk).

This notational device will be particularly useful in writing down
the theorema egregium (see Section 11.6). Given below are a few ex-
amples:

• See section 7.9, where we will use formulas of type

gmjΓ
m
ik + gmiΓ

m
jk = 2gm{jΓ

m
i}k;

• section 9.7 for Li[jL
k
l];

• section 11.5 for Γki[jΓ
n
l]m.

The index notation we have described reflects the fact that the nat-
ural products of matrices are the ones which correspond to composition
of maps. Thus, if A = (aij), B = (bij), and C = (cij) then the product
relation C = AB simplifies to the relation

cij = aikb
k
j.

1.9. The inverse matrix, Kronecker delta

Let B = (bij). The inverse matrix B−1 is sometimes written as

B−1 = (bij)

(here both indices have been raised). Then the equation

B−1B = I

becomes bikbkj = δij (in Einstein notation with repeated index k),
where the expression

δij =

{
1 if i = j
0 if i 6= j
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is referred to as the Kronecker delta function.

Example 1.9.1. The identity endomorphism I = (δij) by definition

satisfies AI = A = IA for all endomorphisms A = (aij), or equivalently

aijδ
j
k = aik = δija

j
k,

using the Einstein summation convention.

Example 1.9.2. Let δij be the Kronecker delta function on Rn,
where i, j = 1, . . . , n, viewed as a linear transformation Rn → Rn.

(1) Evaluate the expression δijδ
j
k

(2) Evaluate the expression δijδ
j
i

Definition 1.9.3. Given a pair of vectors v = viei and w = wiei
in R

3, their vector product is a vector v × w ∈ R
3 satisfying one of the

following two equivalent conditions:

(1) we have v × w = det



e1 e2 e3
v1 v2 v3

w1 w2 w3


, in other words,

v × w = (v2w3 − v3w2)e1 − (v1w3 − v3w1)e2 + (v1w2 − v2w1)e3

= 2
(
v[2w3]e1 − v[1w3]e2 + v[1w2]e3

)
.

(2) the vector v × w is perpendicular to both v and w, of length
equal to the area of the parallelogram spanned by the two
vectors, and furthermore satisfying the right hand rule, mean-
ing that the 3 by 3 matrix formed by the three vectors v, w,
and v × w has positive determinant.

Theorem 1.9.4. We have an identity

a× (b× c) = (a · c)b− (a · b)c
for every triple of vectors a, b, c in R3.

Properly understanding surface theory and related key concepts
such as the Weingarten map (see Section 9.4) depends on linear-algebraic
background related to diagonalisation of symmetric matrices or, more
generally, selfadjoint endomorphisms.

1.10. Eigenvalues, symmetry

In general, a real matrix may not have a real eigenvector or eigen-
value. Thus, the matrix of 90 degree rotation in the plane,

(
0 −1
1 0

)
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does not have a real eigenvector for obvious geometric reasons.
In this section we prove the existence of a real eigenvector (and

hence, a real eigenvalue) for a real symmetric matrix.
This fact has important ramifications in surface theory, since the

various notions of curvature of a surface are defined in terms of the
eigenvalues of a certain symmetric matrix, or more precisely selfadjoint
operator (see sections 9.1 and 10.5). Let

I =



1 0

. . .

0 1




be the (n, n) identity matrix. Thus

I = (δij) i=1,...,n
j=1,...,n

where δij is the Kronecker delta. Let B be an (n, n)-matrix.

Definition 1.10.1. A real number λ is called an eigenvalue of B if

det(B − λI) = 0.

Theorem 1.10.2. If λ ∈ R is an eigenvalue of B, then there is a
vector v ∈ Rn, v 6= 0, such that

Bv = λv. (1.10.1)

The proof is standard.

Definition 1.10.3. A nonzero vector satisfying (1.10.1) is called
an eigenvector belonging to λ.

Recall the formula for the Euclidean inner product:

〈v, w〉 = v1w1 + · · ·+ vnwn =
n∑

i=1

viwi.

Recall that all of our vectors are column vectors.

Lemma 1.10.4. The inner product can be expressed in terms of
matrix multiplication in the following fashion:

〈v, w〉 = vtw.

Recall the following property of the transpose: (AB)t = BtAt.

Lemma 1.10.5. A real matrix B is symmetric if and only if for
all v, w ∈ Rn, one has

〈Bv,w〉 = 〈v, Bw〉.



1.11. FINDING AN EIGENVECTOR OF A SYMMETRIC MATRIX 17

Proof. We have

〈Bv,w〉 = (Bv)tw = vtBtw = 〈v, Btw〉 = 〈v, Bw〉,
proving the lemma. �

1.11. Finding an eigenvector of a symmetric matrix

Theorem 1.11.1. Every real symmetric matrix possesses a real
eigenvector.

We will give two proofs of this important theorem. The first proof
is simpler and passes via complexification.

First proof. where n ≥ 1, and let B be an n× n real symmetric
matrix, B ∈Mn,n(R). As such, it defines a linear map

BR : Rn → R
n

sending v ∈ Rn to Bv, as usual. We now use the field extension R ⊂ C

and view B as a complex matrix

B ∈Mn,n(C).

Then the matrix B defines a complex linear map

BC : Cn → C
n

sending v ∈ Cn to Bv. The characteristic polynomial of BC is a poly-
nomial of positive degree n > 0 and therefore has a root

λ ∈ C

by the fundamental theorem of algebra. Let v ∈ Cn be an associated
eigenvector. Let 〈 , 〉 be the standard Hermitian inner product in C

n.
Recall that the Hermitian inner product is linear in one variable and
skew-linear in the other. Thus, we have4

〈z, w〉 =
n∑

i

ziwi

Then 〈Bv, v〉 = 〈v, Bv〉 since B is real symmetric. Hence

〈λv, v〉 = 〈v, λv〉 = λ〈v, v〉,
and therefore λ is real. �

The second proof is somewhat longer but has the advantage of being
more geometric, as well as more concrete in the choice of the vector in
question.5

4Alternatively, some texts adopt the convention 〈z, w〉 =∑n

i
ziwi.

5We present the alternative proof here.
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Second proof. Let S ⊂ Rn be the unit sphere S = {v ∈ Rn | ‖v‖ = 1}.
Given a symmetric matrix B, define a function f : S → R as the restriction to S of
the function, also denoted f , given by f(v) = 〈v,Bv〉. Let v0 be a maximum of f
restricted to S. Let V ⊥

0 ⊂ Rn be the orthogonal complement of the line spanned
by v0. Let w ∈ V ⊥

0 . Consider the curve v0 + tw, t ≥ 0 (see also a different choice of

curve in Remark 1.11.2 below). Then
d

dt

∣∣∣∣
t=0

f(v0 + tw) = 0 since v0 is a maximum

and w is tangent to the sphere. Now

d

dt

∣∣∣∣∣
0

f(v0 + tw) =
d

dt

∣∣∣∣
0

〈v0 + tw,B(v0 + tw)〉

=
d

dt

∣∣∣∣
0

(〈v0, Bv〉+ t〈v0, Bw〉+ t〈w,Bv0〉+ t2〈w,Bv〉)

= 〈v0, Bw〉+ 〈w,Bv0〉
= 〈Bw, v0〉+ 〈Bv0, w〉
= 〈Btv0, w〉+ 〈Bv0, w〉
= 〈(Bt +B)v0, w〉
= 2〈Bv0, w〉 by symmetry of B.

Thus 〈Bv0, w〉 = 0 for all w ∈ V ⊥
0 . Hence Bv0 is proportional to v0 and so v0 is an

eigenvector of B. �

Remark 1.11.2. Our calculation used the curve v0 + tw which, while tangent
to S at v0 (see section 6.5), does not lie on S. If one prefers, one can use instead
the curve (cos t)v0 + (sin t)w lying on S. Then

d

dt

∣∣∣∣∣
t=0

〈(cos t)v0 + (sin t)w,B((cos t)v0 + (sin t)w)〉 = · · · = 〈(Bt +B)v0, w〉

and one argues by symmetry as before.
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Self-adjoint operators, conic sections

First we reinforce the material on index notation from the previous
lecture.

2.1. Trace of product in index notation

The following result is important in its own right. We reproduce it
here because its proof is a good illustration of the uses of the Einstein
index notation.

Theorem 2.1.1. Let A and B be square n × n matrices. Then
tr(AB) = tr(BA).

Proof. Let A = (aij) and B = (bij). Then

tr(AB) = tr(aikb
k
j) = aikb

k
i

by definition of trace (see Definition 1.6.1). Meanwhile,

tr(BA) = tr(bkia
i
j) = bkia

i
k = aikb

k
i = tr(AB),

proving the theorem. �

2.2. Inner product spaces and self-adjoint operators

In the previous section we worked with real matrices and showed
that the symmetry of a matrix guarantees the existence of a real eigen-
vector. In a more general situation where a basis is not available, a
similar statement holds for a special type of endomorphism of a real
vector space.

Definition 2.2.1. Let V be a real inner product space. An endo-
morphism B : V → V is selfadjoint if one has

〈Bv,w〉 = 〈v, Bw〉 ∀v, w ∈ V. (2.2.1)

Corollary 2.2.2. Every selfadjoint endomorphism of a real inner
product space admits a real eigenvector.

Proof. The selfadjointness was the relevant property in the proof
of Theorem 1.11.1. �

19
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2.3. Orthogonal diagonalisation of symmetric matrices

Theorem 2.3.1. Every symmetric matrix can be orthogonally di-
agonalized.

Proof. A symmetric n × n matrix S defines a selfadjoint endo-
morphism fS of the real inner product space V = Rn given by

fS : V → V, v 7→ Sv.

By Corollary 2.2.2, every selfadjoint endomorphism has a real eigen-
vector v1 ∈ V , which we can assume to be a unit vector:

|v1| = 1.

Let λ1 ∈ R be its eigenvalue. Now we let V1 = V and set

V2 ⊂ V1

be the orthogonal complement of the line Rv1 ⊂ V1. Thus we have an
orthogonal decomposition

V1 = Rv1 ⊕ V2.

Note that V2 is invariant under fS, since if w ∈ V2 then

〈fS(w), v1〉 = 〈Sw, v1〉 = 〈w, Sv1〉 = 〈w, λ1v1〉 = λ1〈w, v1〉 = 0.

The restriction of fS to V2 is still selfadjoint by inheriting the prop-
erty (2.2.1). Namely, since property (2.2.1) holds for all vectors v, w ∈
V , it still holds if these vectors are restricted to vary in a subspace V2 ⊂
V , i.e.,

〈Bv,w〉 = 〈v, Bw〉 ∀v, w ∈ V2. (2.3.1)

Arguing inductively, we obtain an orthonormal basis consisting of eigen-
vectors v1, . . . , vn ∈ V . Denote by λ1, . . . , λn ∈ R their eigenvalues. Let

P = [v1 . . . vn]

be the orthogonal n × n matrix whose columns are the vectors vi, so
that we have

P−1 = P t. (2.3.2)

Consider the diagonal matrix Λ = diag(λ1, . . . , λn). By construction,
we have

S = PΛP t

from (2.3.2), or equivalently,

SP = PΛ.

Indeed, to verify the relation SP = PΛ, note that both sides are equal
to the square matrix [λ1v1 λ2v2 . . . λnvn]. �
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2.4. Classification of conic sections: diagonalisation

A conic section1 (or conic for short) in the plane is by definition a
curve defined by the following equation in the (x, y)-plane:

ax2 + 2bxy + cy2 + dx+ ey + f = 0, a, b, c, d, e, f ∈ R. (2.4.1)

Here we chose the coefficient of the xy term to be 2b rather than b so

as to simplify formulas like (2.4.2) below. Let X =

(
x
y

)
and let

S =

(
a b
b c

)
. (2.4.2)

Then
X tSX = ax2 + 2bxy + cy2.

Theorem 2.4.1. Up to an orthogonal transformation, every conic
section can be written in a “diagonal” form

λ1x
′2 + λ2y

′2 + d′x′ + e′y′ + f = 0, (2.4.3)

where the coefficients λ1 and λ2 are the eigenvalues of the matrix S.

Proof. Consider the row vector

T =
(
d e

)
.

Then TX = dx+ ey. Thus equation (2.4.1) becomes

X tSX + TX + f = 0. (2.4.4)

We now apply Theorem 2.3.1 to orthogonally diagonalize S to ob-
tain S = PΛP t. Substituting this into (2.4.4) yields

X tPΛP tX + TX + f = 0.

We setX ′ = P tX. Then X = PX ′ since P is orthogonal. Furthermore,
we have

(X ′)t = (P tX)t = (X t)(P t)t = (X t)P.

Hence we obtain

(X ′)tΛX ′ + TPX ′ + f = 0.

Letting T ′ = TP , we obtain

(X ′)tΛX ′ + T ′X ′ + f = 0.

Letting x′ and y′ be the components of X ′, i.e. X ′ =

(
x′

y′

)
, we ob-

tain (2.4.3), as required. �

1chatach charut
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To obtain more precise information about the conic, we need to
specify certain nondegeneracy conditions, as discussed in Section 2.5.

2.5. Classification of conics: trichotomy, nondegeneracy

We use the diagonalisation result of the previous section so as to
classify conic sections into three types (under suitable nondegeneracy
conditions): ellipse, parabola, hyberbola.

Theorem 2.5.1. Suppose det(S) 6= 0, i.e., S is of rank 2. Then,
up to a translation, the conic section can be written in the form

λ1(x
′′)2 + λ2(y

′′)2 + f ′′ = 0 (2.5.1)

(note that the constant term is changed).

Proof. If the determinant is nonzero then both eigenvalues λi are
nonzero. The term d′x′ in (2.4.3) can be absorbed into the quadratic
term λ1x

′2 by completing the square as follows:

λ1x
′2 + d′x′ = λ1

(
x′2 + 2

d′

2λ1
x′
)

= λ1

(
x′2 + 2

d′

2λ1
x′ +

(
d′

2λ1

)2
)

− λ1

(
d′

2λ1

)2

= λ1

(
x′ +

d′

2λ1

)2

− d′2

4λ1
,

and we set

x′′ = x′ +
d′

2λ1
.

Similarly e′y′ can be absorbed into λ2y
′2. Geometrically this corre-

sponds to a translation along the axes x′ and y′, proving the theo-
rem. �

Definition 2.5.2. A conic section is called a hyperbola if λ1λ2 < 0,
provided the following nondegeneracy condition is satisfied: the con-
stant f ′′ in equation (2.5.1) is nonzero.

Remark 2.5.3. If the constant is zero, then instead of a hyperbola
we obtain a pair of transverse lines as the solution set.

Definition 2.5.4. A conic section is called an ellipse if λ1λ2 > 0,
provided the following nondegeneracy condition is satisfied: the con-
stant f ′′ in equation (2.5.1) is nonzero and has the opposite sign as
compared to the sign of λ1.
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Remark 2.5.5. If the constant is zero then the ellipse degenerates
to a single point x′′ = y′′ = 0. If f ′′ 6= 0 has the same sign as λ1 then
the solution set is empty.

If the determinant of S is zero then one cannot eliminate the linear
term. Therefore we continue working with the equation λ1x

′2+λ2y
′2+

d′x′ + e′y′ + f = 0 from (2.4.3).

Definition 2.5.6. The conic is a parabola if the following two con-
ditions are satisfied:

(1) the matrix S is of rank 1 (this is equivalent to saying that
λ1λ2 = 0 and one of the λi is nonzero);

(2) if λ1 = 0 then d′ 6= 0, and if λ2 = 0 then e′ 6= 0.

Since the determinant of the matrix S is the product of its eigen-
values, we obtain the following corollary.

Corollary 2.5.7. If the conic ax2 +2bxy+ cy2 + dx+ ey+ f = 0
is an ellipse then ac − b2 > 0. If ac− b2 > 0 and the solution locus is
neither empty nor a single point, then it is an ellipse.

Corollary 2.5.8. If the conic ax2 +2bxy+ cy2 + dx+ ey+ f = 0
is a hyperbola then ac− b2 < 0. If ac− b2 < 0 and the solution locus is
not a pair of transverse lines, then the conic is a hyperbola.

2.6. Quadratic surfaces

A quadratic surface in R3 is the locus of points satisfying the equa-
tion

ax2 + 2bxy + cy2 + 2dxz + fz2 + 2gyz+ hx+ iy+ jz + k = 0, (2.6.1)

where a, b, c, d, e, f, g, h, i, j, k ∈ R.
To bring this to standard form, we apply an orthogonal diagonali-

sation procedure similar to that employed in Section (2.5). Thus, we
define matrices S, X, and D by setting

S =



a b d
b c g
d g f


 , X =



x
y
z


 , T =

(
h i j

)
,

so that the quadratic part of (2.6.1) becomes X tSX, and the linear
part becomes DX. Then equation (2.6.1) takes the form

X tSX +DX + k = 0.

Orthogonally diagonalizing S as before, we conclude that equation (2.6.1)
can be simplified to

ax2 + by2 + cz2 + dx + ey + fz + g = 0, (2.6.2)
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with new variables x, y, z and new coefficients a, b, c, d, e, f, g ∈ R.
The classification of quadratic surfaces is more involved than the

case of curves, and will not be pursued here. However, we point out
some important special cases.

Definition 2.6.1. A quadratic surface is called an ellipsoid if the
coefficients a, b, c in (2.6.2) are nonzero and have the same sign, and
moreover the solution locus is neither a single point nor the empty set.

Remark 2.6.2. The nondegeneracy condition can be ensured by
assuming that the linear terms in (2.6.2) all vanish, and the constant
term g has the opposite sign as compared to the sign of, say, the coef-
ficient a.

Additional special cases are

• the paraboloid z = ax2 + by2,
• the hyperbolic paraboloid z = x2 − y2,
• the hyperboloid of one sheet2 with equation z2 = x2 + y2 − 1,
• the hyperboloid of two sheets3 with equation z2 = x2 + y2+1.

2.7. Jacobi’s criterion

The type of quadratic surface one obtains depends critically on the
signs of the eigenvalues of the matrix S. The signs of the eigenval-
ues can be determined without diagonalisation by means of Jacobi’s
criterion.

Definition 2.7.1. Given a matrix A over a field F , let ∆k denote
the k × k upper-left block, called a principal minor.

Definition 2.7.2. Two matrices are equivalent if they are con-
gruent (rather than similar), meaning that we transform a matrix A
by BtAB (rather than by conjugation B−1AB).

Here B is of course not assumed to be orthogonal.

Theorem 2.7.3 (Jacobi). Let A ∈ Mn(F ) be a symmetric matrix,
and assume det(∆k) 6= 0 for k = 1, . . . , n. Then A is equivalent to the
matrix

diag

(
1

∆1

,
∆1

det∆2

, . . . ,
det∆n−1

det∆n

)
.

2chad-yeriati
3du-yeriati
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Example 2.7.4. For a 2 × 2 symmetric matrix

(
a b
b d

)
Jacobi’s

criterion affirms the equivalence to

(
1
a

0
0 a

ad−b2

)
.

Proof. Take the vector bk = ∆−1
k ek ∈ F k of length k, and pad it

with zeros up to length n. Consider the matrix B = (bij) whose column
vectors are b1, . . . , bn. By Cramer’s formula, the diagonal coefficients
of B satisfy

bkk = det

(
∆k−1 0
0 1/det∆k

)
= det∆k−1/∆k,

so det(B) =
∏n

k=1 bkk = 1/det(A) 6= 0. Compute that BtAB is lower
triangular with diagonal b11, . . . , bkk. Being symmetric, it is diagonal.

�

Remark 2.7.5. If some minor ∆k is not invertible, then A cannot
be definite.

Applying this result in the case of a real symmetric matrix, we
obtain the following corollary.

Corollary 2.7.6. Let A be symmetric. Then A is positive definite
if and only if all det(∆k) > 0.

Define minors in general (choose rows and columns i1, . . . , it). Per-
muting rows and columns, we obtain the following corollary.

Corollary 2.7.7. Let A be symmetric positive definite matrix.
Then all “diagonal” minors are positive definite (and in particular have
positive determinants).

An immediate application of this is determining whether or not a
quadratic surface is an ellipsoid, without having to orthogonally diag-
onalize the matrix of coefficients.

Example 2.7.8. Determine whether or not the quadratic surface

x2 + xy + y2 + xz + z2 + yz + x + y + z − 2 = 0 (2.7.1)

is an ellipsoid.
To solve the problem, we first construct the corresponding matrix

S =




1 1/2 1/2
1/2 1 1/2
1/2 1/2 1



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and then calculate the principal minors ∆1 = 1, ∆2 = 1 · 1− 1
2
· 1
2
=

3/4, and

∆3 = 1 +
1

8
+

1

8
− 1

4
− 1

4
− 1

4
=

1

2
.

Thus all principal minors are positive and therefore the surface is an el-
lipsoid, provided we can show it is nondegenerate. To check nondegen-
eracy, notice that (2.7.1) has at least two distinct solutions: (x, y, z) =
(1, 0, 0) and (x, y, z) = (0, 1, 0). Therefore it is a nondegenerate ellip-
soid.



CHAPTER 3

Hessian, curves, and curvature

3.1. Exercise on index notation

Theorem 3.1.1. Every 2× 2 matrix A = (aij) satisfies the identity

aika
k
j + q δij = akka

i
j, (3.1.1)

where q = det(A).

Proof. We will use the Cayley-Hamilton theorem which asserts
that pA(A) = 0 where pA(λ) is the characteristic polynomial of A. In
the rank 2 case, we have pA(λ) = λ2 − (trA)λ + det(A), and therefore
we obtain

A2 − (trA)A+ det(A)I = 0,

which in index notation gives aika
k
j−akkaij+q δij = 0. This is equivalent

to (3.1.1). �

3.2. Hessian, minima, maxima, saddle points

Given a smooth (C2) function f(u1, . . . , un) of n variables, denote
by

Hf = (fij)i=1,...,n; j=1,...,n

the Hessian matrix of f , i.e. the n× n matrix of second partial deriva-
tives

fij =
∂2f

∂ui∂uj

of f .

Theorem 3.2.1 (equality of mixed partials). In terms of the anti-
symmetrisation notation defined above (1.7.2), we have the identity

f[ij] = 0. (3.2.1)

Recall that the gradient of f at a point p = (u1, . . . , un) is the vector

∇f =




∂f
∂u1
∂f
∂u2
...
∂f
∂un




27
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Definition 3.2.2. A critical point p of f is a point satisfying

∇f(p) = 0,

i.e. ∂f
∂ui

(p) = 0 for all i = 1, . . . , n.

Example 3.2.3 (maxima, minima, saddle points). Let n = 2. Then
the sign of the determinant

det(Hf) =
∂2f

∂u1∂u1
∂2f

∂u2∂u2
−
(

∂2f

∂u1∂u2

)2

at a critical point has geometric significance. Namely, if

det(Hf(p)) > 0,

then p is a maximum or a minimum. If det(Hf(p)) < 0, then p is a
saddle point.1

Example 3.2.4 (Quadratic surfaces). Quadratic surfaces are a rich
source of examples.

(1) The origin is a critical point for the function whose graph is
the paraboloid z = x2 + y2. In the case of the paraboloid the
critical point is a minimum.

(2) Similar remarks apply to the top sheet of the hyperboloid of

two sheets, namely z =
√
x2 + y2 + 1, where we also get a

minimum.
(3) The origin is a critical point for the function whose graph is

the hyperbolic paraboloid z = x2 − y2. In the case of the
hyperbolic paraboloid the critical point is a saddle point.

In addition to the sign, the value of Hf(p) also has geometric sig-
nificance, expressed by the following theorem.

Theorem 3.2.5. Let p ∈ R2 be a critical point of f . Then the value
of det(Hf(p)) is precisely the Gaussian curvature at (p, f(p)) ∈ R

3 of
the surface given by the graph of f in R3.

See Definition 9.7.1 for more details.

3.3. Parametric representation of a curve

There are two main ways of representing a curve in the plane: para-
metric and implicit.

A curve in the plane can represented by a pair of coordinates evolv-
ing as a function of time t, called the parameter:

α(t) = (α1(t), α2(t)), t ∈ [a, b],

1Ukaf
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so that x(t) = α1(t) and y(t) = α2(t). Thus a curve can be viewed as
a map

α : [a, b] → R
2. (3.3.1)

Let C be the image of the map (3.3.1). Then C is the geometric curve
independent of parametrisation. Thus, changing the parametrisation
by setting t = t(s) and replacing α by a new curve β(s) = α(t(s))
preserves the geometric curve.

Definition 3.3.1. A parametrisation is called regular if α′(t) 6= 0
for all t.

3.4. Implicit representation of a curve

A curve in the (x, y)-plane can also be represented implicitly as the
solution set of an equation

F (x, y) = 0,

where F is a function always assumed sufficiently smooth. We will de-
note the corresponding curve CF . Thus, a circle of radius r corresponds
to the choice of the function

F (x, y) = x2 + y2 − r2.

Further examples are given below.

(1) The function F (x, y) = y − x2 defines a parabola.
(2) The function F (x, y) = xy − 1 defines a hyperbola.
(3) The function F (x, y) = x2 − y2 − 1 defines a hyperbola.

In each of these cases, it is easy to find a parametrisation (at least of
a part of the curve), by solving the equation for one of the variables.
Thus, in the case of the circle, we choose the positive square root to
obtain y =

√
r2 − x2, giving a parametrisation of the upperhalf circle

by means of the pair of formulas

α1(t) = t, α2(t) =
√
r2 − t2.

Note this is not all of the curve CF .
Unlike the above examples, in general it is difficult to find an explicit

parametrisation. Locally one can always find one in theory under a
suitable nondegeneracy condition, expressed by the implicit function
theorem.
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3.5. Implicit function theorem

Theorem 3.5.1 (implicit function theorem). Let F (x, y) be a smooth
function. Suppose the gradient of F does not vanish at a point p ∈ CF ,
in other words

∇F (p) 6= 0.

Then there exists a regular parametrisation (α1(t), α2(t)) of the curve CF
in a neighborhood of p.

A useful special case is the following result.

Theorem 3.5.2 (implicit function theorem: special case). Let F (x, y)
be a smooth function, and suppose that

∂F

∂y
(p) 6= 0.

Then there exists a parametrisation y = α2(x), in other words α(t) =
(t, α2(t)) of the curve CF in a neighborhood of p.

Example 3.5.3. In the case of the circle x2+y2 = r2, the point (r, 0)
on the x-axis fails to satisfy the hypothesis of Theorem 3.5.2. The
curve cannot be represented by a differentiable function y = y(x) in a
neighborhood of this point (“vertical tangent”).

3.6. Unit speed parametrisation

We review the standard calculus topic of the curvature of a curve,
which is indispensable to understanding principal curvatures of a sur-
face (cf. Theorem 10.2.1 and Theorem 10.5.4).

Consider a parametrized curve α(t) = (α1(t), α2(t)) in the plane.
Denote by C the underlying geometric curve, i.e., the image of α:

C =
{
(x, y) ∈ R

2 | (∃t) : x = α1(t), y = α2(t)
}
.

Definition 3.6.1. We say α = α(t) is a unit speed curve if
∣∣dα
dt

∣∣ = 1,

i.e.
(
dα1

dt

)2
+
(
dα2

dt

)2
= 1 for all t ∈ [a, b].

When dealing with a unit speed curve, it is customary to denote
the parameter (called arclength) by s.

Example 3.6.2. Let r > 0. Then the curve

α(s) =
(
r cos

s

r
, r sin

s

r

)

is a unit speed parametrisation of the circle of radius r. Indeed, we
have
∣∣∣∣
dα

ds

∣∣∣∣ =

√(
r
1

r

(
− sin

s

r

))2

+

(
r
1

r
cos

s

r

)2

=

√
sin2 s

r
+ cos2

s

r
= 1.
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3.7. Geodesic curvature

Our main interest will be in space curves, when one cannot in gen-
eral assign a sign to the curvature. Therefore in the definition below we
do not concern ourselves with the sign of the curvature of plane curves,
either. In this section, only local properties of curvature of curves will
be studied. A global result on the curvature of curves may be found in
Section 4.6.

Definition 3.7.1. The (geodesic) curvature function kα(s) ≥ 0 of
a unit speed curve α(s) is defined by setting

kα(s) =

∣∣∣∣
d2α

ds2

∣∣∣∣. (3.7.1)

Example 3.7.2. For the circle of radius r parametrized as above,
we have

d2α

ds2
=

(
r
1

r2

(
− cos

s

r

)
, r

1

r2

(
− sin

s

r

))

at s = 0, and so the curvature satisfies

kα =

∣∣∣∣
1

r

(
− cos

s

r
,− sin

s

r

)∣∣∣∣ =
1

r
.

Note that in this case, the curvature is independent of the point, i.e.
is a constant function of s.

In Section 4.2, we will give a formula for curvature with respect to
an arbitrary parametrisation (not necessarily arclength).

In Section 4.4, the curvature will be expressed in terms of the angle
formed by the tangent vector with the positive x-axis.

3.8. Osculating circle of a curve

To give a more geometric description of the curvature in terms of
the osculating circle, we first recall the following fact about the second
derivative.

Theorem 3.8.1. The second derivative of a function f(x) may be
computed from a triple of points f(x), f(x+h), f(x−h) that are infin-
itely close to each other, as follows:

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
.

The theorem remains valid for vector-valued functions, see Defini-
tion 3.8.2. We see that the second derivative can be calculated from
the value of the function at a triple of nearby points x, x + h, x− h.
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Definition 3.8.2. The osculating circle to the curve parametrized
by α at the point α(s) is obtained by choosing a circle passing through
the three points

α(s), α(s− h), α(s+ h)

for infinitesimal h. The standard part2 of the resulting circle is the
osculating circle; equivalently, we take limit as h tends to zero.

Note that the osculating circle and the curve are “better than tan-
gent” (they have second order tangency). Since the second derivative is
computed from the same triple of points for α(s) and for the osculating
circle (cf. Remark 3.8.1), we have the following [We55, p. 13].

Theorem 3.8.3. The curvatures of the osculating circle and the
curve at the point of tangency are equal.3

3.9. Radius of curvature

It is helpful to recall Leibniz’s and Cauchy’s definition of the radius
of curvature of a curve (see Cauchy [2]): the radius of curvature is the
distance from the curve to the intersection point of two infinitely close
normals to the curve. In more detail, we have the following.

Definition 3.9.1. The radius of curvature of a curve C at a point p
is the distance from p to the intersection point of the normals to the
curve at infinitely close points p and p′ of C.

The intersection point of two infinitely close normals is the center
of the osculating circle at p.

2See Keisler [Ke74].
3For example, let y = f(x). Compute the curvature of the graph of f

when f(x) = ax2. Let B = (x, x2). Let A be the midpoint of OB. Let C be the
intersection of the perpendicular bisector of OB with the y-axis. Let D = (0, x),

Triangle OAC yields

sinψ =
OA

OC
=

1

2

√
x2 + (ax2)2

r
,

triangle OBD yields

sinψ =
BD

OB
=

ax2√
x2 + a2x4

,

and
1

2

√
x2 + a2x4

r
=

ax2√
x2 + a2x4

,

so that 1

2
(x2+a2x4) = arx2, and 1

2
(1+a2x2) = ar, so that r = 1+a

2
x
2

2a
. Taking the

limit as x → 0, we obtain r = 1

2a
, hence k = 1

r
= 2a = f ′′(0). Thus the curvature

of the parabola at its vertex equals the second derivative with respect to x (even
though x is not the arclength parameter of the graph).
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3.10. Examples of second order operators

If a curve is given implicitly as the locus (solution set) of an equa-
tion F (x, y) = 0, one can calculate the geodesic curvature by means of
the theorems given in the next section. We start with a definition.

Definition 3.10.1. The flat Laplacian ∆0 is the differential oper-
ator is defined by

∆0 =
∂2

∂x2
+

∂2

∂y2
.

This means that when we apply ∆ to a smooth function F =
F (x, y), we obtain

∆0F =
∂2F

∂x2
+
∂2F

∂y2
.

We also introduce the traditional shorter notation

Fxx =
∂2F

∂x2
, Fyy =

∂2F

∂y2
, Fxy =

∂2F

∂x ∂y
.

Then we obtain the equivalent formula

∆0(F ) = Fxx + Fyy.

Example 3.10.2. If F (x, y) = x2 + y2 − r2, then ∂2F
∂x2

= 2 and

similarly ∂2F
∂y2

= 2, hence ∆0F = 4.

We will be interested in the following operator.

Definition 3.10.3. The Bateman-Reiss operator DB is defined by

DB(F ) = FxxF
2
y − 2FxyFxFy + FyyF

2
x , (3.10.1)

which is a non-linear second order differential operator.

The subscript “B” stands for Bateman, as in the Bateman equa-
tion FxxF

2
y − 2FxyFxFy + FyyF

2
x = 0. Alternatively, the operator can

be represented by the determinant

DB(F ) = −det




0 Fx Fy
Fx Fxx Fxy
Fy Fxy Fyy




This was treated in detail by Goldman [Go05, p. 637, formula (3.1)].
The same operator occurs in the Reiss relation in algebraic geometry
(see Griffiths and Harris [GriH78, p. 677].4

4Michel Reiss (1805-1869).
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3.11. Geodesic curvature for an implicit curve

The operator defined in the previous section allows us to calculate
the curvature of a curve presented in implicit form, without having to
look for a parametrisation. Let CF ⊂ R2 be a curve defined implicitly
by F (x, y) = 0.

Theorem 3.11.1. Let p ∈ CF , and suppose ∇F (p) 6= 0. Then the
geodesic curvature k of CF at the point p is given by

k =
|DB(F )|
|∇F |3 ,

where DB is the Bateman-Reiss operator defined in (3.10.1).

Example 3.11.2. In the case of the circle of radius r defined by
the equation F (x, y) = 0, where F = x2 + y2 − r2, we obtain

Fx = 2x, Fy = 2y, ∇F = (2x, 2y)t,

and therefore |∇F | = 2
√
x2 + y2 = 2r. Meanwhile, Fxx = 2, Fyy =

2, Fxy = 0, hence

DB(F ) = 2(2y)2 + 2(2x)2 = 8r2,

and therefore curvature is k= 8r2

8r3
= 1

r
.

3.12. Curvature of graph of function

Theorem 3.12.1. Let x0 be a critical point of f(x), and consider
the graph of f at (x0, f(x0)). Then the curvature of the graph equals

k = |f ′′(x0)|.
Proof. We parametrize the graph by α(t) = (t, f(t)). Then we

have α′′(t) = (0, f ′′(t)) and |α′′(t)| = |f ′′(t)|, which is the expected
answer at a critical point. However, the parametrisation (t, f(t)) is not
a unit speed parametrisation of the graph.

Intuitively, the second order Taylor polynomial of f at x0 has the
same osculating circle as f , and therefore it suffices to check the result
for a standard curve such as a circle or a parabola.

We check that applying the characterisation of curvature in terms
of the Bateman operator DB(F ) = FxxF

2
y − 2FxyFxFy + FyyF

2
x gives

the same answer. Let F (x, y) = −f(x) + y. At the critical point x0,
we have

∇F = (−f ′(x0), 1)
t = (1, 0)t,

while
DB(F ) = −f ′′(x)(1)2 − 0 + 0 == −f ′′(x).
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Hence the curvature at this point satisfies

k =
|DBF |
|∇F | =

|f ′′(x0)|
1

= |f ′′(x0)|,

as required. �

3.13. Existence of arclength

The unit speed parametrisation is sometimes called the arclength
parametrisation of the geometric curve C.

Theorem 3.13.1. Suppose a curve α(t) satisfies α′(t) 6= 0 at every
point. Then there exists a unit speed parametrition β(s) = α(t(s)),
defined by equation (3.13.1) below, of the underlying geometric curve C.

Proof. Recall length of graph of f(x) from a to b :

L =

∫ b

a

√
1 + (f ′(x))2 dx .

The element of length (infinitesimal increment) ds decomposes by Pythago-
ras’ theorem as follows:

ds2 = dx2 + dy2.

More generally, for a curve α(t) = (α1(t), α2(t)), we have the following
formula for the length:

L =

∫ b

a

√√√√
(
d(α1)

dt

)2

+

(
dα2

dt

)2

dt =

∫ b

a

∣∣∣dα
dt

∣∣∣dt.

We define the new parameter s = s(t) by setting

s(t) =

∫ t

a

∣∣∣dα
dτ

∣∣∣dτ, (3.13.1)

where τ is a dummy variable (internal variable of integration). By the

Fundamental Theorem of Calculus, we have
ds

dt
=
∣∣∣dα
dt

∣∣∣. Let β(s) =

α(t(s)). Then by chain rule

dβ

ds
=
dα

dt

dt

ds
=
dα

dt

1

ds/dt
=
dα

dt

1

|dα/dt| .

Thus
∣∣dβ
ds

∣∣ = 1. �

Example 3.13.2. The curve α(t) = (t3, t2) is smooth but not reg-
ular. Its graph exhibits a cusp. In this case it is impossible to find an
arclength parametrisation of the curve.
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Example 3.13.3. Let f(x) = 1
3
(2 + x2)

3/2
. Find (an implicit form

of) arc length parametrisation of the graph of f .

Remark 3.13.4 (Curves in R3). A space curve may be written in
coordinates as

α(s) = (α1(s), α2(s), α3(s)).

Here s is the arc length if
∣∣∣dαds
∣∣∣ = 1 i.e.

∑3
i=1

(
dαi

ds

)2
= 1.

Example 3.13.5. Helix α(t) = (a cosωt, a sinωt, bt).
(i) make a drawing in case a = b = ω = 1.
(ii) parametrize by arc length.
(iii) compute the curvature.



CHAPTER 4

Total curvature, lattices, tori

4.1. Index notation

For a matrix A of size 3×3, the characteristic polynomial pA(λ) has
the form pA(λ) = λ3 −Tr(A)λ2 + s(A)λ− q(A)λ0. Here q(A) = det(A)
and s(A) = λ1λ2 + λ1λ3 + λ2λ3, where λi are the eigenvalues of A. By
Cayley-Hamilton theorem, we have

pA(A) = 0. (4.1.1)

Exercise 4.1.1. Express the equation (4.1.1) in index notation.

4.2. Curvature with respect to an arbitrary parameter

The formula for the curvature of a plane curve is particularly sim-
ple with respect to the arclength parameter s (see formula (3.7.1)).
However, it can be expressed in terms of an arbitrary parameter t of a
regular parametrisation, as well.

Theorem 4.2.1. With respect to an arbirary parameter t, the for-
mula for the curvature of a regular plane curve α(t) = (x(t), y(t)) is

kα(t) =
|x′y′′ − y′x′′|
(x′2 + y′2)3/2

(4.2.1)

Here x′ = dx/dt, y′ = dy/dt, etc. Alternatively, denoting by

α′ = dα/dt

the tangent vector to the curve α(t) = (x(t), y(t)), we obtain

κ =
|x′y′′ − y′x′′|

|α′|3 .

For a proof, see (4.4.2).

Remark 4.2.2. In Section 4.4, curvature will be expressed in terms
of the angle θ formed by the tangent vector with the positive x-axis.

Example 4.2.3. Calculate the curvature of the graph of y = f(x)
at a critical point x0 using formula (4.2.1).

37
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4.3. Jordan curves in the plane and parameter θ

Recall that a Jordan curve in the plane is a non-selfintersecting
closed curve. A Jordan curve can be represented by a continuous one-
to-one map

α : S1 → R
2.

Theorem 4.3.1 (Jordan curve theorem). A Jordan curve separates
the plane into two open regions: a bounded region and an unbounded
region.

The bounded region is called the interior region.
We will only deal with smooth (i.e., infinitely differentiable) regular

(i.e, α′ 6= 0) maps α.
Let α(s) be an arclength parametrisation of a Jordan curve, de-

noted C, in the plane:

C ⊂ C.

Such a parametrisation exists by Theorem 3.13.1. Let v(s) = α′(s)
be its velocity vector at the point α(s) ∈ C. The vector v(s) can be
thought of as a point of the unit circle S1 ⊂ C (by translating the initial
point of the vector v(s) to the origin). Therefore v can be thought of
as a map to the unit circle called the Gauss map, as follows.

The Gauss map is usually defined using the normal vector (see
Remark 4.6.3), but for plane curves it can be defined even more simply
in terms of the tangent vector, because the two vectors differ by a 90◦

rotation in the plane.

Definition 4.3.2. The Gauss map is the map

v : C → S1, α(s) 7→ v(s). (4.3.1)

We identify R2 with C so that a vector in the plane can be written
as a complex number.

Definition 4.3.3 (function theta). We write v(s) = eiθ(s), where
the angle θ(s) is measured counterclockwise, from the positive ray of
the x-axis, to the vector v(s).

Using the complex logarithm, we can also express θ(s) as follows:

θ(s) =
1

i
log v(s) = −i log v(s).

Recall that we have the relation

d

dθ
eiθ = ieiθ.



4.4. CURVATURE EXPRESSED IN TERMS OF θ(s) 39

4.4. Curvature expressed in terms of θ(s)

Let s be an arclength parameter. The tangent vector v(s) to a
curve α(s) is expressed as v(s) = eiθ(s) (see Definition 4.3.3).

Theorem 4.4.1. We have the following expression for the curva-
ture kα of the curve α:

kα(s) =

∣∣∣∣
dθ

ds

∣∣∣∣ . (4.4.1)

Proof. Recall that v(s) = eiθ(s). By chain rule, we have

dv

ds
= ieiθ(s)

dθ

ds
,

and therefore the curvature kα(s) satisfies

kα(s) = |α′′(s)| =
∣∣∣∣
dv

ds

∣∣∣∣ =
dθ

ds
,

since |i| = 1. �

Corollary 4.4.2. Let α(t) = (x(t), y(t)) be an arbitrary parametri-
sation (not necessarily arclength) of a curve. We have the following
expression for the curvature kα:

kα =
|x′y′′ − y′x′′|

|α′|3 (4.4.2)

Proof. With respect to an arbitrary parameter t, the components
of the tangent vector v(t) = α′(t) are x′(t) and y′(t). Hence we have

tan θ =
y′

x′
. (4.4.3)

Differentiating (4.4.3) with respect to t, we obtain

1

cos2 θ

dθ

dt
=
x′y′′ − x′′y′

x′2
. (4.4.4)

Meanwhile

x′ =
dx

dt
=
dx

ds

ds

dt
= cos θ

ds

dt
and

dθ

dt
=
dθ

ds

ds

dt
. (4.4.5)

Furthermore, dt
ds

= |v(t)| = |α′(t)| = |dα
dt
|. Solving (4.4.5) for dθ

ds
, we

obtain from (4.4.4) that

dθ

ds
=

|x′y′′ − y′x′′|
|α′|3

and by (4.4.1) we obtain (4.4.2). �
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4.5. Convexity

Definition 4.5.1. A smooth Jordan curve C is called strictly con-
vex if one of the following two equivalent conditions is satisfied:

(1) every interval joining a pair of points of C is contained in the
interior region;

(2) consider the tangent line to C at a point p ∈ C; then the
complement C \ {p} lies entirely in one of the open halfplanes
defined by the tangent line, for all p ∈ C.

Theorem 4.5.2. Assume that the smooth regular Jordan curve is
strictly convex, and parametrized counterclockwise. Then the Gauss
map v : C → S1 of (4.3.1) is one-to-one and onto, and θ(s) is mono-
tone increasing.

Proof. First we show the “onto” part. First we consider the case
of “horizontal” vectors v(s). These occur at points on C with maxi-
mal and minimal imaginary part, i.e., the y-coordinate. By applying
Rolle’s theorem to the function y(s), we obtain that these points have
horizontal tangent vectors. Such points correspond to the values of θ
equal to 0 and π.

Similarly, to obtain the pair of “opposite” tangent vectors

v = eiθ and − v = ei(θ+π),

we consider the vector w0 = ei(θ+
π
2
) orthogonal to v. We then seek the

extrema of the the function f given by the scalar product

f(s) = 〈α(s), w0〉
where α(s) is a parametrisation of the curve C. At an extremum s0 of
the function f , we have

d

ds
(f(s))|s=s0 =

〈
dα

ds
, w0

〉
= 0.

Hence the tangent vector v(s0) = α′(s0) at each extremum of f is
parallel to v. As v ranges over S1, we thus obtain the points on the
curve where the tangent vector is parallel to v.

To show that the Gauss map (4.3.1) is one-to-one, we proceed by
contradiction (relying on the law of excluded middle). Suppose on the
contrary that two distinct points p ∈ C and q ∈ C have the same
tangent vector v = eiθ. Then the tangent lines Tp and Tq to C at p
and q are parallel. By definition of convexity, the curve C lies on the
same side of each of the tangent lines Tp and Tq. Hence the tangent
lines must coincide: Tp = Tq. Thus, both p and q must lie on the
common line Tp = Tq. This implies that the arc of the curve between p
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and q is contained in C. This contradicts the hypothesis that the curve
is strictly convex. The contradiction proves that the map is one-to-one.

Note that a counterclockwise parametrisation corresponds to θ(s)
increasing, while a clockwise parametrisation corresponds to θ(s) de-
creasing. �

4.6. Total curvature of a convex Jordan curve

The result on the total curvature1 of a Jordan curve is of interest in
its own right. Furthermore, the result serves to motivate an analogous
statement of the Gauss–Bonnet theorem for surfaces in Section 12.3.

Definition 4.6.1. The total curvature Tot(C) of a curve C with
arclenth parametrisation α(s) : [a, b] → R2 is the integral

Tot(C) =

∫ b

a

kα(s)ds. (4.6.1)

When a curve C is closed, i.e, α(a) = α(b), it is more convenient to
write the integral (4.6.1) using the notation of a line integral

Tot(C) =

∮

C

kα(s)ds. (4.6.2)

Theorem 4.6.2. The total curvature of each strictly convex Jordan
curve C with arclength parametrisation α(s) equals 2π, i.e.,

Tot(C) =

∮

C

kα(s)ds = 2π.

Proof. Let α(s) be a unit speed parametrisation so that α(0) be
the lowest point of the curve, and assume the curve is parametrized
counterclockwise. Let v(s) = α′(s). Then v(0) = ei0 = 1 and θ(0) = 0.
The function θ = θ(s) is monotone increasing from 0 to 2π (see The-
orem 4.5.2). Applying the change of variable formula for integration,
we obtain

Tot(C) =

∮

C

kα(s)ds =

∮

C

∣∣∣∣
dv

ds

∣∣∣∣ ds =
∮

C

dθ

ds
ds =

∫ 2π

0

dθ = 2π,

proving the theorem. �

Remark 4.6.3. We can also consider the normal vector n(s) to the
curve. The normal vector satisfies n(s) = ei(θ+

π
2
) = iei(θ) and |dn

ds
| =

|dv
ds
| = dθ

ds
. Therefore we can also calculate the total curvature as follows:
∮

C

kα(s)ds =

∮

C

∣∣∣∣
dn

ds

∣∣∣∣ ds =
∮

C

dθ

ds
ds =

∫ 2π

0

dθ = 2π,

1Akmumiyut kolelet



42 4. TOTAL CURVATURE, LATTICES, TORI

with n(s) in place of v(s).

Remark 4.6.4. The theorem in fact holds for an arbitrary regular
Jordan curve, provided we adjust the definition of curvature to allow for
negative sign (in such case θ(s) will not be a monotone function). We
have dealt only with the convex case in order to simplify the topological
considerations. See further in Section 4.7.

Remark 4.6.5. A similar calculation will yield the Gauss–Bonnet
theorem for convex surfaces in Section 12.3.

4.7. Signed curvature k̃α of Jordan curves in the plane

Let α(s) be an arclength parametrisation of a Jordan curve in the
plane. We assume that the curve is parametrized counterclockwise. As
in Section 4.4, a continuous branch of θ(s) can be chosen where θ(s)
is the angle measured counterclockwise from the positive x-axis to the
tangent vector v(s) = α′(s).

Note that if the Jordan curve is not convex, the function θ(s) will
not be monotone and at certain points its derivative may take negative
values: θ′(s) < 0. Once we have such a continuous branch, we can

define the signed curvature k̃α as follows.

Definition 4.7.1. The signed curvature k̃α(s) of a plane Jordan
curve α(s) oriented counterclockwise is defined by setting

k̃α(s) =
dθ

ds
.

We have the following generalisation of Theorem 4.6.2 on the total
curvature of a convex curve.

Theorem 4.7.2. The total signed curvature k̃α of each Jordan curve C
with arclength parametrisation α(s) equals 2π, i.e.,

T̃ot(C) =

∫ b

a

k̃α(s)ds = 2π.

Proof. We exploit the continuous branch θ(s) as in Theorem 4.6.2,
but without the absolute value signs on the derivative of θ(s). Applying
the change of variable formula for integration, we obtain

T̃ot(C) =

∮

C

k̃α(s)ds =

∮

C

dθ

ds
ds =

∫ 2π

0

dθ = 2π,

proving the theorem. �
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Figure 4.7.1. Three points on a curve with the same
tangent direction, but the middle one corresponds
to θ′(s) < 0.

Remark 4.7.3. For nonconvex Jordan curves, the Gauss map to the
circle will not be one-to-one, but will still have an algebraic degree one.
This phenomenon has a far-reaching analogue for imbedded surfaces
where the algebraic degree is proportional to the Euler characteristic.

Definition 4.7.4. The algebraic degree of a map θ : C → S1 at a
point z ∈ S1 is defined to be the sum

∑

θ−1(z)

sign

(
dθ

ds

)
,

where the sum runs over all points in the inverse image of z.

For Jordan curves (i.e., imbedded curves), the algebraic degree is
always 1. This is the topological ingredient behind the theorem on the
total curvature of a Jordan curve.





CHAPTER 5

Rotation index of a closed curve, lattices

5.1. Rotation index of a closed curve in the plane

Given a regular closed plane curve of length L, a continuous branch
of θ(s) can be chosen even if the curve is not simple, obtaining a map

θ : [0, L] → R.

As in Section 4.7, we can assume that θ(0) = 0. Then θ(L) is necessarily
an integer multiple of 2π. See Millman & Parker [MP77, p. 55].

Definition 5.1.1. The rotation index ια of a closed unit speed
plane curve α(s) is the integer

ια =
θ(L)− θ(0)

2π
.

Example 5.1.2. The rotation index of a figure-8 curve is 0.

Theorem 5.1.3. Let α(s) be an arclength parametrisation of a geo-
metric curve C. Then the rotation index is related to the total signed

curvature T̃ot(C) as follows:

ια =
T̃ot(C)

2π
. (5.1.1)

The proof is the same as in Section 4.7. An analogous relation
between the Euler characteristic of a surface and its total Gaussian
curvature appears in Section 12.4.

5.2. Connected components of curves

Until now we have only considered connected curves. A curve may
in general have several connected components.1

Definition 5.2.1. Two points p, q on a curve C ⊂ R
2 are said

to lie in the same connected component if there exists a continuous
map h : [0, 1] → C such that h(0) = p and h(1) = q.

1Rechivei k’shirut.
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This defines an equivalence relation on the curve C, and decomposes
it as a dijoint union

C =
⊔

i

Ci

Definition 5.2.2. The set of connected components of C is de-
noted π0(C). The number of connected components is denoted |π0(C)|.

Example 5.2.3. Let F (x, y) = (x2+y2−1)((x−10)2+y2−1), and
let CF be the curve defined by F (x, y) = 0. Then CF is the union of a
pair of disjoint circles. Therefore it has two connected components:

|π0(CF )| = 2.

The total curvature can be similarly defined for a non-connected
curve, by summing the integrals over each connected components.

Definition 5.2.4. The total curvature of a curve C =
⊔
i Ci is

Tot(C) =
∑

i

Tot(Ci).

We have the following generalisation of the theorem on total cur-
vature of a curve.

Theorem 5.2.5. If each connected component of a curve C is a
strictly convex Jordan curve, then the total curvature of C is

Tot(C) = 2π |π0(C)|.
Proof. We apply the previous theorem to each connected compo-

nent, and sum the resulting total curvatures. �

5.3. Circle via the exponential map

We will discuss lattices and their fundamental domains in Euclidean
space Rb in the next section. Here we give an intuitive introduction in
the simplest case b = 1.

Every lattice (discrete2 subgroup; see definition below in Section 5.4)
in R = R1 is of the form

Lα = αZ ⊂ R,

for some real α > 0. It is spanned by the vector αe1 (or −αe1).
The lattice Lα ⊂ R is in fact an additive subgroup. Therefore we

can form the group-theoretic quotient R/Lα. This quotient is a circle
(see Theorem 5.3.1). A fundamental domain for the quotient may be

2b’didah
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chosen to be the interval [0, α]. The 1-volume, i.e. the length, of the
quotient circle is therefore precisely α.

We will give an equivalent description in terms of the complex func-
tion ez.

Theorem 5.3.1. The quotient group R/Lα is isomorphic to the
circle S1 ⊂ C.

Proof. Consider the map φ̂ : R → C defined by

φ̂(x) = e
i2πx
α .

By the usual addition rule for the exponential function, this map is a
homomorphism from the additive structure on R to the multiplicative
structure in the group C \ {0}. Namely, we have

φ̂(x + y) = φ̂(x)φ̂(y) ∀x∀y ∈ R.

Furthermore, we have φ̂(x + αm) = φ̂(x) for all m ∈ Z. Thus Lα =

ker φ̂. By the group-theoretic isomorphism theorem, the map φ̂ de-
scends to a map

φ : R/Lα → C,

which is injective. Its image is the unit circle S1 ⊂ C, which is a group
under multiplication. �

5.4. Lattice, fundamental domain

Let b > 0 be an integer.

Definition 5.4.1. A lattice L in Euclidean space Rb is the integer
span of a linearly independent set of b vectors.

Thus, if vectors v1, . . . , vb are linearly independent, then they span
a lattice

L = {n1v1 + . . .+ nbvb : ni ∈ Z} = Zv1 + Zv2 · · ·+ Zvb

Note that the subgroup is isomorphic to Zb.

Definition 5.4.2. An orbit of a point x0 ∈ Rb under the action of
a lattice L is the subset of Rb given by the collection of elements

{x0 + g | g ∈ L} .
Definition 5.4.3. The quotient

R
b/L

(which can be understood at the group-theoretic level as in the case of
the circle R/L) is called a b-torus.
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Definition 5.4.4. A fundamental domain for the torus Rb/L is a
closed set F ⊂ Rb satisfying the following three conditions:

• every orbit meets F in at least one point;
• every orbit meets the interior Int(F ) of F in at most one point;
• the boundary ∂F is of zero b-dimensional volume (and can be
thought of as a union of (n− 1)-dimensional hyperplanes).

In the literature, one often replaces “n-dimensional volume” by n-
dimensional “Lebesgue measure”.

Example 5.4.5. The parallelepiped spanned by a collection of basis
vectors for L is such a fundamental domain.

More concretely, consider the following example.

Example 5.4.6. The vectors e1 and e2 in R2 span the unit square
which is a fundamental domain for the lattice Z2 ⊂ R2 = C of Gaussian
integers.

Example 5.4.7. Consider the vectors v = (1, 0) and w = ( 1
2
,
√
3
2
)

in R2 = C. Their span is a parallelogram giving a fundamental domain
for the lattice of Eisenstein integers (see Example 5.5.2).

Definition 5.4.8. The total volume of the b-torus Rb/L is by def-
inition the b-volume of a fundamental domain.

It is shown in advanced calculus that the total volume thus defined
is independent of the choice of a fundamental domain.

5.5. Lattices in the plane

Let b = 2. Every lattice L ⊂ R2 is of the form

L = SpanZ(v, w) ⊂ R
2,

where {v, w} is a linearly independent set. For example, let α and β
be nonzero reals. Set

Lα,β = SpanZ(αe1, βe2) ⊂ R
2.

This lattice admits an orthogonal basis, namely {αe1, βe2}.
Example 5.5.1 (Gaussian integers). For the standard lattice Zb ⊂

Rb, the torus Tb = Rb/Zb satisfies vol(Tb) = 1 as it has the unit cube
as a fundamental domain.

In dimension 2, the resulting lattice in C = R2 is called the Gaussian
integers. It contains 4 elements of least length. These are the fourth
roots of unity.
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Example 5.5.2 (Eisenstein integers). Consider the lattice LE ⊂
R2 = C spanned by 1 ∈ C and the sixth root of unity e

2πi
6 ∈ C:

LE = SpanZ(e
iπ/3, 1) = Z eiπ/3 + Z 1. (5.5.1)

The resulting lattice is called the Eisenstein integers. The torus T2 =

R2/LE satisfies area(T2) =
√
3
2
. The Eisenstein lattice contains 6 ele-

ments of least length, namely all the sixth roots of unity.

5.6. Successive minima of a lattice

Let B be Euclidean space, and let ‖ ‖ be the Euclidean norm.
Let L ⊂ (B, ‖ ‖) be a lattice, which is by definition of maximal
rank rank(L) = dim(B).

Example 5.6.1. The first successive minimum, λ1(L, ‖ ‖) is the
least length of a nonzero vector in L.

We can express the definition symbolically by means of the formula

λ1(L, ‖ ‖) = min
{
‖v1‖

∣∣ v1 ∈ L \ {0}
}
.

We illustrate the geometric meaning of λ1 in terms of the circle of
Theorem 5.3.1.

Theorem 5.6.2. Consider a lattice L ⊂ R. Then the circle R/L
satisfies

length(R/L) = λ1(L).

Proof. This follows by choosing the fundamental domain F =
[0, α] where α = λ1(L), so that L = αZ, cf. Example 5.4 above. �

Definition 5.6.3. For k = 2, define the second successive mini-
mum of the lattice L with rank(L) ≥ 2 as follows. Given a pair of
vectors S = {v, w} in L, define the “length”3 |S| of S by setting

|S| = max(‖v‖, ‖w‖).
Then the second successive minimum, λ2(L, ‖ ‖) is the least “length”
of a pair of non-proportional vectors in L:

λ2(L) = inf
S
|S|,

where S runs over all linearly independent (i.e. non-proportional) pairs
of vectors {v, w} ⊂ L.

Example 5.6.4. For Gaussian and Eisenstein integers, λ1 = λ2 = 1.

Example 5.6.5. We have λ1(Lα,β) = min(|α|, |β|) and λ2(Lα,β) =
max(|α|, |β|).

3Quotation marks: merka’ot.
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5.7. Gram matrix

The volume of the torus Rb/L (see Definition 5.4.3) is also called
the covolume of the lattice L. It is by definition the volume of a funda-
mental domain for L, e.g. a parallelepiped spanned by a Z-basis for L.

Definition 5.7.1. Given a finite set S = {vi}i=1,...,n in Rb, we
define its Gram matrix as the matrix of inner products

Gram(S) = (〈vi, vj〉)i=1,...,n; j=1,...,n. (5.7.1)

Theorem 5.7.2. Let b = n. The volume of the torus R
b/L is the

square root of the determinant of the Gram matrix of a basis for the
lattice L.

Thus, the parallelepiped P spanned by the vectors {vi} satisfies

vol(P ) =
√

det(Gram(S)). (5.7.2)

Proof. Let A be the square matrix whose columns are the column
vectors v1, v2 . . . , vn in Rn. It is shown in linear algebra that

vol(P ) = |det(A)|.
Let B = AtA, and let B = (bij). Then

bij = vti vj = 〈vi, vj〉
Hence B = Gram(S). Thus

det(Gram(S)) = det(At A) = det(A)2 = vol(P )2

proving the theorem. �

5.8. Sphere and torus as topological surfaces

The topology of surfaces will be discussed in more detail in Chap-
ter 16.17. For now, we will recall that a compact surface can be either
orientable or non-orientable. An orientable surface is characterized
topologically by its genus, i.e. number of “handles”.

Recall that the unit sphere in R3 can be represented implicitly by
the equation

x2 + y2 + z2 = 1.

Parametric representations of surfaces are discussed in Section 7.2.

Example 5.8.1. The sphere has genus 0 (no handles).

Theorem 5.8.2. The 2-torus is characterized topologically in one
of the following four equivalent ways:

(1) the Cartesian product of a pair of circles: S1 × S1;
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(2) the surface of revolution in R3 obtained by starting with the
following circle in the (x, z)-plane: (x − 2)2 + z2 = 1 (for ex-
ample), and rotating it around the z-axis;

(3) a quotient R2/L of the plane by a lattice L;
(4) a compact 2-dimensional manifold of genus 1.

The equivalence between items (2) and (3) can be seen by marking
a pair of generators of L by different color, and using the same colors to
indicate the corresponding circles on the imbedded torus of revolution,
as follows:

Figure 5.8.1. Torus viewed by means of its lattice (left)
and by means of a Euclidean imbedding (right)

Note by comparison that a circle can be represented either by its
fundamental domain which is [0, 2π] (with endpoints identified), or as
the unit circle imbedded in the plane.





CHAPTER 6

Hermite constant, Clairaut’s relation

6.1. Hermite constant

The Hermite constant γb is defined in one of the following two equiv-
alent ways:

(1) γb is the square of the maximal first successive minimum λ1,
among all lattices of unit covolume;

(2) γb is defined by the formula

√
γb = sup

{
λ1(L)

vol(Rb/L)
1
b

∣∣∣∣∣L ⊆ (Rb, ‖ ‖)
}
, (6.1.1)

where the supremum is extended over all lattices L in Rb with
a Euclidean norm ‖ ‖.

Remark 6.1.1 (Dense packings). A lattice realizing the supremum
may be thought of as the one realizing the densest packing in Rb when
we place the balls of radius 1

2
λ1(L) at the points of L.

6.2. Standard fundamental domain

We will discuss the case b = 2 in detail. An important role is played
in this dimension by the standard fundamental domain.

Definition 6.2.1. The standard fundamental domain, denoted D,
is the set

D =

{
z ∈ C

∣∣∣∣ |z| ≥ 1, |Re(z)| ≤ 1

2
, Im(z) > 0

}
(6.2.1)

cf. [Ser73, p. 78].

The domain D a fundamental domain for the action of PSL(2,Z)
in the upperhalf plane of C.

Lemma 6.2.2. Multiplying a lattice L ⊂ C by nonzero complex num-
bers does not change the value of the quotient

λ1(L)
2

area(C/L)
.

53
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Proof. We write such a complex number as reiθ. Note that multi-
plication by reiθ can be thought of as a composition of a scaling by the
real factor r, and rotation by angle θ. The rotation is an isometry (con-
gruence) that preserves all lengths, and in particular the length λ1(L)
and the area of the quotient torus.

Meanwhile, multiplication by r results in a cancellation

λ1(rL)
2

area(C/rL)
=

(rλ1(L))
2

r2 area(C/L)
=

r2λ1(L)
2

r2 area(C/L)
=

λ1(L)
2

area(C/L)
,

proving the lemma. �

6.3. Conformal parameter τ

Two lattices in C are said to be similar if one is obtained from the
other by multiplication by a nonzero complex number.

Theorem 6.3.1. Every lattice in C is similar to a lattice spanned
by {τ, 1} where τ is in the standard fundamental domain D of (6.2.1).
The value τ = eiπ/3 corresponds to the Eisenstein integers (5.5.1).

Proof. Let L ⊂ C be a lattice. Choose a “shortest” vector z ∈ L,
i.e. we have |z| = λ1(L). By Lemma 6.2.2, we may replace the lattice L
by the lattice z−1L.

Thus, we may assume without loss of generality that the com-
plex number +1 ∈ C is a shortest element in the lattice L. Thus
we have λ1(L) = 1. Now complete the element +1 to a Z-basis

{τ̄ ,+1}
for L. Here we may assume, by replacing τ̄ by −τ̄ if necessary, that
Im(τ̄ ) > 0.

Now consider the real part Re(τ̄). We adjust the basis by adding a
suitable integer k to τ̄ :

τ = τ̄ − k where k =
[
Re(τ̄) + 1

2

]
(6.3.1)

(the brackets denote the integer part), so it satisfies the condition

−1

2
≤ Re(τ) ≤ 1

2
.

Since τ ∈ L, we have |τ | ≥ λ1(L) = 1. Therefore the element τ lies in
the standard fundamental domain (6.2.1). �

Example 6.3.2. For the “rectangular” lattice Lα,β = SpanZ(α, βi),
we obtain
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τ(Lα,β) =

{ |β|
|α| i if |β| > |α|
|α|
|β| i if |α| > |β|.

Corollary 6.3.3. Let b = 2. Then we have the following value for
the Hermite constant: γ2 =

2√
3
= 1.1547.... The corresponding optimal

lattice is homothetic to the Z-span of cube roots of unity in C (i.e. the
Eisenstein integers).

Proof. Choose τ as in (6.3.1) above. The pair

{τ,+1}
is a basis for the lattice. The imaginary part satisfies Im(τ) ≥

√
3
2
, with

equality possible precisely for

τ = ei
π
3 or τ = ei

2π
3 .

Moreover, if τ = r exp(iθ), then

sin θ =
Im(τ)

|τ | ≥
√
3

2
.

The proof is concluded by calculating the area of the parallelogram
in C spanned by τ and +1;

λ1(L)
2

area(C/L)
=

1

|τ | sin θ ≤ 2√
3
,

proving the theorem. �

Definition 6.3.4. A τ ∈ D is said to be the conformal parameter
of a flat torus T 2 if T 2 is similar to a torus C/L where L = Zτ + Z1.

Example 6.3.5. In dimensions b ≥ 3, the Hermite constants are
harder to compute, but explicit values (as well as the associated critical

lattices) are known for small dimensions, e.g. γ3 = 2
1
3 = 1.2599...,

while γ4 =
√
2 = 1.4142....

6.4. Spherical coordinates

Spherical coordinates will be useful in understanding surfaces of
revolution (see Section 7.5).

Definition 6.4.1. Spherical coordinates (ρ, θ, ϕ) in R3 are defined
by the following formulas. We have

ρ =
√
x2 + y2 + z2 =

√
r2 + z2
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is the distance to the origin, while ϕ is the angle with the z-axis, so
that cosϕ = z/ρ. Here θ is the angle inherited from polar coordinates
in the x, y plane, so that tan θ = y

x
.

Remark 6.4.2. The interval of definition for the variable ϕ is ϕ ∈
[0, π] since ϕ = arccos z

ρ
and the range of the arccos function is [0, π].

Meanwhile θ ∈ [0, 2π] as usual.

The unit sphere S2 ⊂ R3 is defined by

S2 = {ρ = 1}.
A latitude1 on the unit sphere is a circle satisfying the equation

ϕ = constant.

A latitude is parallel to the equator. The equator ϕ = π/2 is the
only latitude that’s a great circle. A latitude can be parametrized by
setting θ(t) = t, ϕ(t) = constant. Note that on the unit sphere {ρ = 1},
we have

r = sinϕ, (6.4.1)

where r is the distance to the z-axis.

6.5. Great circles parametrized and implicit

In Section 8.4, we will encounter the geodesic equation. This is a
system of nonlinear second order differential equations.

We seek to provide a geometric intuition for this equation. We will
establish a connection between solutions of this system, on the one
hand, and spherical great circles, on the other. Such a connection is
established via the intermediary of Clairaut’s relation for a variable
point on a great circle:

r(t) cos γ(t) = const

where r is the distance to the (vertical) axis of revolution and γ is the
angle with the latitudinal circle (cf. Theorem 6.6.1). In this section,
we will verify Clairaut’s relation synthetically for great circles, and also
show that the latter satisfy a first order differential equation. In Sec-
tion 8.4 we will complete the connection by deriving Clairaut’s relation
from the geodesic equation.

Let S2 ⊂ R3 be the unit sphere defined by the equation

x2 + y2 + z2 = 1.

A plane P through the origin is given by an equation

ax + by + cz = 0, (6.5.1)

1kav rochav
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where the vector 

a
b
c


 6=



0
0
0




is nonzero.

Definition 6.5.1. A great circle G of S2 is given by an intersection

G = S2 ∩ P.
Example 6.5.2 (A parametrisation of the equator of S2).

α(t) = (cos t)e1 + (sin t)e2.

In general, every great circle can be parametrized by

α(t) = (cos t)v + (sin t)w

where v and w are orthonormal.

Example 6.5.3 (an implicit (non-parametric) representation of a
great circle). Recall that we have

x = r cos θ = ρ sinϕ cos θ; y = ρ sinϕ sin θ; z = ρ cosϕ . (6.5.2)

If the circle lies in the plane ax+ by+ cz = 0 where a, b, c are fixed, the
great circle in coordinates (θ, ϕ) is defined implicitly by the equation

a sinϕ cos θ + b sinϕ sin θ + c cos θ = 0,

as in (6.5.1).

Lemma 6.5.4. Scalar product of vector valued functions satisfies
Leibniz’s rule:

〈f, g〉′ = 〈f ′, g〉+ 〈f, g′〉. (6.5.3)

Proof. See [Leib]. In more detail, let (f1, f2) be components of f ,
and let (g1, g2) be components of g. Then

〈f, g〉′ = (f1g1 + f2g2)
′ = f1g

′
1 + f ′

1g1 + f2g
′
2 + f ′

2g2 = 〈f ′, g〉+ 〈f, g′〉,
completing the proof. �

Lemma 6.5.5. Let α : R → S2 be a parametrized curve on the

sphere S2 ⊂ R3. Then the tangent vector
dα

dt
is perpendicular to the

position vector α(t):
〈
α(t),

dα

dt

〉
= 0.
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Proof. We have 〈α(t), α(t)〉 = 1 by definition of S2. We apply the

operator
d

dt
to obtain

d

dt
〈α(t), α(t)〉 = 0.

Next, we apply Leibniz’s rule (6.5.3) to obtain
〈
α(t),

dα

dt

〉
+
〈dα
dt
, α(t)

〉
= 2
〈
α(t),

dα

dt

〉
=

d

dt
(1) = 0,

completing the proof. �

6.6. Clairaut’s relation

Theorem 6.6.1 (Clairaut’s relation). Let α(t) be a regular para-
metrisation of a great circle G on S2 ⊂ R3. Let r(t) denote the dis-
tance from α(t) to the z-axis, and let γ(t) denote the angle between the
tangent vector α̇(t) to the curve and the vector tangent to the latitude
at the point α(t). Then

r(t) cos γ(t) = const.

Here the constant has value const = rmin, where rmin is the least dis-
tance from a point of G to the z-axis.

Definition 6.6.2. A spherical triangle is the following collection
of data: the vertices are points of S2, the sides are arcs of great circles,
while the angles are defined to be the angles between tangent vectors
to the sides. Here we assume that

(1) all sides have length < π,
(2) the three vertices do not lie on a common great circle.

Remark 6.6.3 (Spherical sine law).

sin a

sinα
=

sin b

sin β
=

sin c

sin γ

Example 6.6.4. Let γ =
π

2
, then sin a = sin c sin γ. Note that for

small values of a, c we recapture the Euclidean formula

a = c sinα

as the limiting case.

Definition 6.6.5. A longitude (meridian)2 is (half) a great circle
passing through the North Pole e3 = (0, 0, 1).

2kav orech



6.7. PROOF OF CLAIRAUT’S RELATION 59

Lemma 6.6.6. Assume G is not a longitude (meridian) and let p ∈
G be the point with the maximal z-coordinate among the points of G.
Then the great circle G has the following equivalent properties:

(1) it is perpendicular at p to the longitude (meridian) passing
through p, and

(2) G is tangent at p to the latitudinal circle.

Proof. Let α(t) be a parametrisation of G with α(0) = p. Since
the function 〈α(t), e3〉 achieves its maximum at t = 0, we have

d

dt

∣∣∣
0

〈α(t), e3〉 = 0.

By Leibniz’s rule,
〈dα
dt

∣∣∣
0

, e3

〉
= −

〈
α(t),

de3
dt

〉
= 0,

since e3 is constant. Let
.
α(t) =

dα

dt
. Thus 〈 .α(0), e3〉 = 0. Also 〈 .α(0), p〉 =

0 by Lemma 6.5.5. Since the tangent vector to the longitude (meridian)
through p lies in the plane spanned by p and e3, the lemma follows. �

6.7. Proof of Clairaut’s relation

Proof of Clairaut’s relation. Note that we have an angle
of π

2
−γ between

.
α(t) and the vector tangent to the longitude (meridian)

at α(t) (this is equivalent to the vanishing of the metric coefficient g12
for a surface of revolution).

Let p ∈ S2 be the point of α(t) with maximal z-coordinate. Note
that if ϕ(t) is the spherical coordinate ϕ of α(t), then r(t) = sinϕ(t).
Consider the spherical triangle with vertices α(t), p, and the north
pole e3.

By Lemma 6.6.6, the angle at p is
π

2
. Hence by the law of sines,

sin c sin
(π
2
− γ
)
= sin b,

where

• c = ϕ(t) = arc of longitude (meridian) joining α(t) to e3;
• b = arc of longitude (meridian) joining p to e3.

Note that r = sin c by (6.4.1). Since b is independent of t, the theorem
is proved. �

Note that the parametrisation in Clairaut’s formula need not be
arclength. Assume G is not a longitude (meridian), so we can param-
etrize it by the value of the spherical coordinate θ. Note that ρ ≡ 1.
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By the implicit function theorem, we can think of G as defined by a
function

ϕ = ϕ(θ).

Theorem 6.7.1. The great circle G satisfies the differential equa-
tion

1

r2
+

1

r4

(
dϕ

dθ

)2

=
1

const2
, (6.7.1)

where r = sinϕ and const = sinϕmin from Theorem 6.6.1.

Proof. An ‘element of length’, ds, along C decomposes into a lon-
gitudinal (along a longitude (meridian), north-south) displacement dϕ,
and a latitudinal (east-west) displacement rdθ. These are related by

ds sin γ = dϕ

ds cos γ = rdθ

so that ds2 = (dϕ)2 + (rdθ)2. Hence

rdθ tan γ = ds sin γ = dϕ,

or tan γ =
dϕ

rdθ
. Hence cos2 γ =

1

1 +
(
dϕ
rdθ

)2 . Therefore by Clairaut’s

relation (Theorem 6.6.1), we obtain

(
const

r

)2
(
1 +

(
dϕ

rdθ

)2
)

= 1. (6.7.2)

Equivalently,

1 +

(
dϕ

rdθ

)2

=
( r

const

)2

or (
dϕ

rdθ

)2

=
r2

const2
− 1

or

dϕ

rdθ
=

√
r2

const2
− 1

or

1

r

dϕ

dθ
=

√
r2

const2
− 1

or

1

sinϕ

dϕ

dθ
=

√
sin2 ϕ

const2
− 1 (6.7.3)
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Equivalently,

1

r2
+

1

r4

(
dϕ

dθ

)2

=
1

const2
where r = sinϕ.

This equation is solved explicitly in terms of integrals in Example 8.4.3
below. �

Remark 6.7.2. At a point where ϕ is not extremal as a function
of θ, theorem on the uniqueness of solution applies and gives a unique
geodesic through the point.

However, at a point of maximal ϕ, the hypothesis of the uniqueness
theorem does not apply. Namely, the square root expression on the
right hand side of (6.7.3) does not satisfy the Lipschitz condition as
the expression under the square root sign vanishes. In fact, uniqueness
fails at this point, as a latitude (which is not a geodesic) satisfies the
differential equation, as well. Here we have r = const, and at an
extremal value of ϕ one can no longer solve the equation by separation
of variables (as this would involve division by the radical expression
which vanishes at the extremal value of ϕ). At this point, there is a
degeneracy and general results about uniqueness of solution cannot be
applied.





CHAPTER 7

Local geometry of surfaces; first fundamental form

7.1. Local geometry of surfaces

The differential geometry of surfaces in Euclidean 3-space starts
with the observation that they inherit a metric structure from the am-
bient space (i.e. the Euclidean space). We would like to understand
which geometric properties of this structure are intrinsic, in a sense to
be clarified.

Remark 7.1.1. Following [Ar74, Appendix 1, p. 301], note that
a piece of paper may be placed flat on a table, or it may be rolled
into a cylinder, or it may be rolled into a cone. However, it cannot
be transformed into the surface of a sphere, that is, without tearing or
stretching. Understanding this phenomenon quantitatively is our goal,
cf. Figure 11.6.1.

7.2. Regular surface; Jacobian

Our starting point is the first fundamental form, obtained by re-
stricting the 3-dimensional inner product. What does the first funda-
mental form measure? A helpful observation to keep in mind is that it
allows one to measure the length of curves on the surface.

Consider a surface M ⊂ R3 parametrized by a map x(u1, u2) or

x : R2 → R
3. (7.2.1)

We will always assume that x is differentiable. From now on we will
frequently omit the underline in x, and write simply “x”, to lighten the
notation. Denote by Jx its Jacobian matrix, i.e. the 3× 2 matrix

Jx =

(
dxi

duj

)
, (7.2.2)

where xi are the three components of the vector valued function x.

Definition 7.2.1. The parametrisation x of the surfaceM is called
regular if one of the following equivalent conditions is satisfied:

(1) the vectors ∂x
∂u1

and ∂x
∂u2

are linearly independent;
(2) the Jacobian matrix (7.2.2) is of rank 2.

63
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Example 7.2.2. Let β > 0 be fixed, and consider the function
f(x, y) =

√
β2 − x2 − y2. The graph of f can be parametrized as

follows:

x = (u1, u2, f(u1, u2)).

This provides a parametrisation of the (open) northern hemisphere.

Then ∂x
∂u1

= (1, 0, fx)
t while ∂x

∂u2
= (0, 1, fy)

t. Note that we have

fx =
−x
f

=
−x√

β2 − x2 − y2
, fy =

−y
f
. (7.2.3)

The southern hemisphere can be similarly parametrized by

x′ = (u1, u2,−f(u1, u2)).
The formulas for the ∂x

∂ui
are then ∂x

∂u1
= (1, 0,−fx)t = (1, 0, x√

β2−x2−y2
),

while ∂x
∂u2

= (0, 1,−fy)t = (0, 1, y√
β2−x2−y2

).

7.3. First fundamental form of a surface

Let 〈 , 〉 denote the inner product in R3. For i = 1, 2 and j = 1, 2,
define functions gij = gij(u

1, u2) called “metric coefficients” by

gij(u
1, u2) =

〈 ∂x
∂ui

,
∂x

∂uj

〉
. (7.3.1)

Remark 7.3.1. We have gij = gji as the inner product is symmet-
ric.

Example 7.3.2 (Metric coefficients for the graph of a function).
The graph of a function f satisfies

〈
∂x

∂u1
,
∂x

∂u1

〉
= 1 + f 2

x ,

〈
∂x

∂u1
,
∂x

∂u2

〉
= fxfy,

〈
∂x

∂u2
,
∂x

∂u2

〉
= 1 + f 2

y .

Therefore in this case we have

(gij) =

(
1 + f 2

x fxfy
fxfy 1 + f 2

y

)

In the case of the hemisphere, the partial derivatives are as in for-
mula (7.2.3).
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Example 7.3.3 (Metric coefficients in spherical coordinates). Con-
sider the parametrisation of the unit sphere as a function of spherical
coordinates, so that x = x(θ, ϕ). We have x = sinϕ cos θ, while y =
sinϕ sin θ, and z = cosϕ. Setting u1 = θ and u2 = ϕ, we obtain

∂x

∂u1
= (− sinϕ sin θ, sinϕ cos θ, 0)

and
∂x

∂u2
= (cosϕ cos θ, cosϕ sin θ,− sinϕ),

Thus in this case we have

(gij) =

(
sin2 ϕ 0
0 1

)

so that det(gij) = sin2 ϕ and
√

det(gij) = sinϕ.

Definition 7.3.4. The vectors xi =
∂x

∂ui
, i = 1, 2, are called the

tangent vectors to the surface M .

Theorem 7.3.5. The matrix (gij) is the Gram matrix of the pair
of tangent vectors:

(gij) = JTx Jx,

cf. formula (5.7.2).

The proof is immediate.

Definition 7.3.6. The plane spanned by the vectors x1(u
1, u2)

and x2(u
1, u2) is called the tangent plane to the surface M at the

point p = x(u1, u2), and denoted

TpM.

Definition 7.3.7. The first fundamental form Ip of the surface M
at p is the bilinear form on Tp defined by setting

Ip : TpM × TpM → R,

defined by the restriction of the ambient Euclidean inner product:

Ip(v, w) = 〈v, w〉R3,

for all v, w ∈ TpM . With respect to the basis (frame) {x1, x2}, it is
given by the matrix (gij), where

gij = 〈xi, xj〉.
The coefficients gij are sometimes called ‘metric coefficients.’

Like curves, surfaces can be represented either implicitly or para-
metrically.
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7.4. Plane, cylinder

The example of the sphere was discussed in the previous section.
We now consider two more examples.

Example 7.4.1. The x, y-plane in R3 is defined implicitly by z = 0.
Let x(u1, u2) = (u1, u2, 0) ∈ R3. This is a parametrisation of the xy-
plane in R3. Then x1 = (1, 0, 0)t and x2 = (0, 1, 0)t. Then

g11 = 〈x1, x1〉 =
〈

1
0
0


 ,



1
0
0



〉

= 1,

etcetera. Thus we have (gij) =

(
1 0
0 1

)
= I.

Example 7.4.2. Let x(u1, u2) = (cos u1, sin u1, u2). This formula
provides a parametrisation of the cylinder. We have

x1 = (− sin u1, cos u1, 0)t

and x2 = (0, 0, 1)t, while

g11 =

〈

− sin u1

cos u1

0


 ,



− sin u1

cos u1

0



〉

= sin2 u1 + cos2 u1 = 1,

etc. Thus (gij) =

(
1 0
0 1

)
= I.

Remark 7.4.3. The first fundamental form does not contain all
the information (even up to Euclidean congruences) about the surface.
Indeed, the plane and the cylinder have the same first fundamental
form, but are geometrically distinct imbedded surfaces.

7.5. Surfaces of revolution

Example 7.5.1 (Surfaces of revolution). Here it is customary to
use the notation u1 = θ and u2 = φ. The starting point is a curve C
in the xz-plane, parametrized by a pair of functions

x = f(φ), z = g(φ).

The surface of revolution (around the z-axis) defined by C is parametrized
as follows:

x(θ, φ) = (f(φ) cos θ, f(φ) sin θ, g(φ)). (7.5.1)

If we start with the vertical line f(φ) = 1, g(φ) = φ, the resulting
surface of revolution is the cylinder. For f(φ) = sinφ and g(φ) = cos φ,
we obtain the sphere S2 in spherical coordinates.
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Theorem 7.5.2. If φ is the arclength parameter of the curve C,
then the first fundamental form of the corresponding surface of revolu-
tion (7.5.1) is given by

(gij) =

(
f 2 0
0 1

)
.

Proof. We have

x1 =
∂x

∂θ
= (−f sin θ, f cos θ, 0),

x2 =
∂x

∂φ
=

(
df

dφ
cos θ,

df

dφ
sin θ,

dg

dφ

)

therefore

g11 =

∣∣∣∣∣∣∣

−f sin θ
f cos θ

0

∣∣∣∣∣∣∣

2

= f 2 sin2 θ + f 2 cos2 θ = f 2

and

g22 =

∣∣∣∣∣∣∣




df
dφ

cos θ
df
dφ

sin θ
dg
dφ




∣∣∣∣∣∣∣

2

=

(
df

dφ

)2

(cos2 θ + sin2 θ) +

(
dg

dφ

)2

=

(
df

dφ

)2

+

(
dg

dφ

)2

and

g12 =

〈

−f sin θ
f cos θ

0


 ,




df
dφ

cos θ
df
dφ

sin θ
dg
dφ



〉

= −f df
dφ

sin θ cos θ + f
df

dφ
cos θ sin θ = 0.

Thus

(gij) =

(
f 2 0

0
(
df
dφ

)2
+
(
dg
dφ

)2
)
.

In the case of an arclength parametrisation, we obtain g22 = 1, proving
the theorem. �

Example 7.5.3. Consider the curve (sinφ, cosφ) in the x, z-plane.
The resulting surface of revolution is the sphere, where the φ parame-
ter coincides with the angle ϕ of spherical coordinates. Thus, for the
sphere S2 we obtain

(gij) =

(
sin2 φ 0
0 1

)
.
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7.6. Pseudosphere

Example 7.6.1. The pseudosphere (so called because its Gaussian
curvature equals −1) is the surface of revolution generated by a curve
called the tractrix, parametrized by (f, g). Here f(φ) = eφ and

g(φ) =

∫ φ

0

√
1− e2ψdψ,

where −∞ < φ ≤ 0. The tractrix generates a surface of revolution
with g11 = e2φ, while

g22 = (eφ)2 + (
√

1− e2φ)2

= e2φ + 1− e2φ = 1.

Thus (gij) =

(
e2φ 0
0 1

)
.

Exercise 7.6.2. Compute the coefficients gij for the standard parametri-
sation of the graph of z = f(x, y) by (u1, u2, f(u1, u2)).

7.7. Einstein summation convention

In the next section we will use again the Einstein summation con-
vention. Let’s review some exercises exploiting this.

Exercise 7.7.1. A matrix A is called idempotent if A2 = A. Write
the idempotency condition in indices with Einstein summation conven-
tion (without Σ’s).

Exercise 7.7.2. Matrices A and B are similar if there exists an
invertible matrix P such that AP − PB = 0. Write the similarity
condition in indices, as the vanishing of the (i, j)th coefficient of the
difference AP − PB.

7.8. Measuring length of curves on surfaces

Let us now explain how to measure the length of curves on a surface
in terms of the metric coefficients of the surface. Let

α : [a, b] → R
2, α(t) = (α1(t), α2(t))

be a plane curve.

Theorem 7.8.1. Let β(t) = x ◦ α(t) be a curve on the surface x.
Then the length L of β is given by the formula

L =

∫ b

a

√
gij
dαi

dt

dαj

dt
dt.
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Proof. The length L of β is calculated as follows using chain rule:

L =

∫ b

a

∣∣∣∣
dβ

dt

∣∣∣∣ dt =
∫ b

a

∣∣∣∣∣

2∑

i=1

∂x

∂ui
dαi

dt

∣∣∣∣∣ dt

=

∫ b

a

〈
xi
dαi

dt
, xj

dαj

dt

〉1/2

dt

=

∫ b

a

(
〈xi, xj〉

dαi

dt

dαj

dt

)1/2

dt =

=

∫ b

a

√
gij(α(t))

dαi

dt

dαj

dt
dt.

Thus

L =

∫ b

a

√
gij(α(t))

dαi

dt

dαj

dt
dt.

�

Example 7.8.2. If gij = δij is the identity matrix, then the length
of the curve β = x ◦ α on the surface equals the length of the curve α

of R2. Indeed, If gij = δij, then L =

∫ b

a

√(
dα1

dt

)2

+

(
dα2

dt

)2

dt = the

length of α(t) in R
2. The parametrisation in this case is an isometry.

To simplify notation, let x = x(t) = α1(t) and y = y(t) = α2(t).
Then the infinitesimal element of arclength is

ds =
√
dx2 + dy2,

and the length of the curve is∫
ds =

∫ √
dx2 + dy2.

7.9. The symbols Γkij of a surface

The symbols Γkij, roughly speaking,1 account for how the surface
twists in space. They are, however, coordinate dependent and have
no intrinsic geometric meaning. We will see that the symbols Γkij also
control the behavior of geodesics on the surface. Here geodesics can be
thought of as curves that are to the surface what straight lines are to
a plane, or what great circles are to a sphere, cf. Definition 8.3.2.

Let x : R2 → R3 be a regular parametrized surface, and let xi =
∂x

∂ui
.

1In the first approximation: kiruv rishon.
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Definition 7.9.1. The normal vector n(u1, u2) to a regular surface
at the point x(u1, u2) ∈ R3 is defined in terms of the vector product,
cf. Definition 1.9.3, as follows:

n =
x1 × x2
|x1 × x2|

,

so that 〈n, xi〉 = 0 ∀i.
The vectors x1, x2, n form a basis (frame) for R3 (since x is regular

by hypothesis). Recall that the gij were defined in terms of first partial
derivatives of x. Meanwhile, the symbols Γkij are defined in terms of
the second partial derivatives (since they are not even tensors, one
does not stagger the indices). Namely, they are the coefficients of the
decomposition of the second partial derivative vector xij, defined by

xij =
∂2x

∂ui∂uj

with respect to the basis, or frame,2 (x1, x2, n) :

Definition 7.9.2. The symbols Γkij are uniquely determined by the
formula

xij = Γ1
ijx1 + Γ2

ijx2 + Lijn

(the coefficients Lij will be discussed in Section 10.1).

7.10. Basic properties of the symbols Γkij

Proposition 7.10.1. We have the following formula for the sym-
bols:

Γkij = 〈xij, x`〉g`k,
where (gij) is the inverse matrix of gij.

Proof. We have

〈xij, x`〉 = 〈Γkijxk + Lijn, x`〉 = 〈Γkijxk, x`〉+ 〈Lijn, x`〉 = Γkijgk`.

We now multiply by g`m and sum:

〈xij, x`〉g`m = Γkijgk`g
`m = Γkijδ

m
k = Γmij .

This is equivalent to the desired formula. �

Remark 7.10.2. We have the following relation: Γkij = Γkji, or Γ
k
[ij] =

0 ∀ijk.
2Maarechet yichus
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Example 7.10.3 (The plane). Calculation of the symbols Γkij for
the plane x(u1, u2) = (u1, u2, 0). We have x1 = (1, 0, 0), x2 = (0, 1, 0).
Thus we have xij = 0 ∀i, j. Hence Γkij ≡ 0 ∀i, j, k.

Example 7.10.4 (The cylinder). Calculation of the symbols for
the cylinder x(u1, u2) = (cos u1, sin u1, u2). The normal vector is n =
(cos u1, sin u1, 0), while x1 = (− sin u1, cos u1, 0), x2 = (0, 0, 1). Thus
we have x22 = 0, x21 = 0 and so Γk22 = 0 and Γk12 = Γk21 = 0 ∀k.

Meanwhile, x11 = (− cos u1,− sin u2, 0). This vector is proportional
to n:

x11 = 0x1 + 0x2 + (−1)n.

Hence Γk11 = 0 ∀k.
Definition 7.10.5. We will use the following notation for the par-

tial derivative of gij:

gij;k =
∂

∂uk
(gij).

Lemma 7.10.6. In terms of the symmetrisation notation introduced
in Section 1.7, we have

gij;k = 2gm{iΓ
m
j}k.

Proof. Indeed,

gij;k = ∂uk〈xi, xj〉 = 〈xik, xj〉+ 〈xi, xjk〉 = 〈Γmikxm, xj〉+ 〈Γmjkxm, xi〉.
By definition of the metric coefficients, we have

gij;k = Γmikgmj + Γmjkgmi = gmjΓ
m
ik + gmiΓ

m
jk = 2gm{jΓ

m
i}k

or 2gm{iΓ
m
j}k. �

An important role in the theory is played by the intrinsic nature
of the coefficients Γ. Namely, we will prove that they are determined
by the metric coefficients alone, and are therefore independent of the
ambient (extrinsic) geometry of the surface, i.e., the way it “sits” in
3-space.

7.11. Intrinsic nature of the symbols Γkij

Theorem 7.11.1. The symbols Γkij can be expressed in terms of the
first fundamental form and its derivatives as follows :

Γkij =
1

2
(gi`;j − gij;` + gj`;i)g

`k,

where gij is the inverse matrix of gij.
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Γ1
ij

j = 1 j = 2

i = 1 0 1
f
df
dφ

i = 2 1
f
df
dφ

0

Table 7.12.1. Symbols Γkij of a surface of revolution (7.12.1)

Proof. Applying Lemma 7.10.6 three times, we obtain

gi`;j − gij;` + gj`;i = 2gm{iΓ
m
`}j − 2gm{iΓ

m
j}` + 2gm{jΓ

m
`}i

= gmiΓ
m
`j + gm`Γ

m
ij − gmiΓ

m
j` − gmjΓ

m
i` + gmjΓ

m
`i + gm`Γ

m
ji

= 2gm`Γ
m
ji .

Thus
1

2
(gi`;j−gij;`+gj`;i)g`k = Γmijgm`g

`k = Γmij δ
k
m = Γkij, as required. �

7.12. Symbols Γkij for a surface of revolution

Recall that a surface of revolution is obtained by starting with a
curve f(φ), g(φ) in the (x, z) plane, and rotating it around the z-axis,
obtaining the parametrisation x(θ, φ) = (f(φ) cos θ, f(φ) sin θ, g(φ)).
Thus we adopt the notation

u1 = θ, u2 = φ.

Lemma 7.12.1. For a surface of revolution we have Γ1
11 = Γ1

22 = 0,

while Γ1
12 =

f df
dφ

f2
, cf. Table 7.12.1.

Proof. For the surface of revolution

x(θ, φ) = (f(φ) cos θ, f(φ) sin θ, g(φ)), (7.12.1)

the metric coefficients are given by the matrix

(gij) =

(
f 2 0

0
(
df
dφ

)2
+
(
dg
dφ

)2
)
.

Since the off-diagonal coefficients g12 = 0 vanish, the coefficients of the
inverse matrix satisfy

gii =
1

gii
. (7.12.2)
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We have
∂

∂θ
(gii) = 0 since gii depend only on φ. Thus the terms

gii;1 = 0 (7.12.3)

vanish. Let us now compute the symbols Γ1
ij for k = 1. Using formulas

(7.12.2) and (7.12.3), we obtain

Γ1
11 =

1

2g11
(g11;1 − g11;1 + g11;1) by formula (7.12.2)

= 0 by formula (7.12.3).

Similarly,

Γ1
12 =

1

2g11
(g11;2 − g12;1 + g12;1) =

g11;2
2g11

=

d
dφ
(f 2)

2f 2
=
f df

dφ

f 2
,

while Γ1
22 =

1
2g11

(g12;2 − g22;1 + g12;2) =
g12;2
g11

=
d
dφ

(0)

g11
= 0. �





CHAPTER 8

Conformally equivalent metrics, geodesic equation

8.1. Metrics conformal to the standard flat metric

A particularly important class of metrics are those conformal to the
flat metric, in the following sense. We will use the symbol

λ

for the conformal factor of the metric, as below.

Lemma 8.1.1. Consider a metric whose coefficients are of the form

gij = λ(u1, u2)δij.

Then we have Γ1
11 =

λ1
2λ
, Γ1

22 =
−λ1
2λ

, and Γ1
12 =

λ2
2λ

The values of the coefficients are listed in Table 8.1.1.

Proof. By hypothesis, we have g11 = g22 = λ(u1, u2) while g12 = 0.
We have

Γ1
ij =

1

2λ
(gi1;j − gij;1 + gj1;i),

and the lemma follows by examining the cases. �

Γ1
ij

j = 1 j = 2

i = 1 λ1
2λ

λ2
2λ

i = 2

λ2
2λ −λ1

2λ

Γ2
ij

j = 1 j = 2

i = 1 −λ2
2λ

λ1
2λ

i = 2

λ1
2λ λ2

2λ

Table 8.1.1. Symbols Γkij of a conformal metric λδij

75
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8.2. Geodesics on a surface

What is a geodesic on a surface?
A geodesic on a surface can be thought of as the path of an ant

crawling along the surface of an apple, according to Gravitation, a
Physics textbook [MiTW73, p. 3]. Imagine that we peel off a narrow
strip of the apple’s skin along the ant’s trajectory, and then lay it out
flat on a table. What we obtain is a straight line, revealing the ant’s
ability to travel along the shortest path.

On the other hand, a geodesic is defined by a certain nonlinear
second order ordinary differential equation, cf. (8.3.1). To make the
geodesic equation more concrete, we will examine the case of the sur-
faces of revolution. Here the geodesic equation transforms into a con-
servation law (conservation of angular momentum)1 called Clairaut’s
relation. The latter lends itself to a synthetic verification for spherical
great circles, as in Theorem 6.6.1.

We will derive the geodesic equation using the calculus of varia-
tions. I once heard R. Bott point out a surprising aspect of M. Morse’s
foundational work in this area. Namely, Morse systematically used the
length functional on the space of curves. The simple idea of using the
energy functional instead of the length functional was not exploited
until later. The use of energy simplifies calculations considerably, as
we will see in Section 10.3.

8.3. Geodesic equation

Consider a plane curve R
s
→
α

R
2

(u1,u2)
where α = (α1(s), α2(s)). If x :

R2 → R3 is a parametrisation of a surface M , the composition

R
s
→
α

R
2

(u1,u2)
→
x
R

3

yields a curve
β = x ◦ α

on M .

Proposition 8.3.1. Every regular curve β(t) on M satisfies the
identity

β ′′ =
(
αi

′
αj

′
Γkij + αk

′′)
xk +

(
Lijα

j ′αi
′
)
n

Proof. Write β = x ◦ α, then β ′ = xiα
i′. We have

β ′′ =
d

ds
(xi ◦ α)αi′ + xiα

i′′ = xijα
j ′αi

′
+ xkα

k′′.

1tena’ zaviti
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Meanwhile xij = Γkijxk + Lijn, proving the proposition. �

Definition 8.3.2. A curve β = x ◦α is a geodesic on the surface x
if the one of the following two equivalent conditions is satisfied:

(a) we have for each k = 1, 2,

(αk)
′′

+ Γkij(α
i)

′

(αj)
′

= 0 where
′

=
d

ds
, (8.3.1)

meaning that

(∀k) d2αk

ds2
+ Γkij

dαi

ds

dαj

ds
= 0;

(b) the vector β ′′ is perpendicular to the surface and one has

β ′′ = Lijα
i′αj

′
n. (8.3.2)

Remark 8.3.3. The equations (8.3.1) will be derived using the
calculus of variations, in Section 10.3. Furthermore, by Lemma 8.3.5,
such a curve β must have constant speed.

Proof of equivalence. If β is a geodesic, then applying Propo-
sition 8.3.1, we obtain

β ′′ = Lijα
i′αj

′
n,

showing that the vector β ′′ is perpendicular to (every tangent vector
of) the surface. On the other hand, if β ′′ is proportional to the normal
vector n, then the tangential component of β ′′ must vanish, proving
(8.3.2). �

Example 8.3.4. In the plane, all coefficients Γkij = 0 vanish. Then

the equation becomes (αk)
′′

= 0, i.e. α(s) is a linear function of s. In
other words, the graph is a straight line. Thus, all geodesics in the
plane are straight lines.

Lemma 8.3.5. A curve β satisfying the geodesic equation (8.3.1) is
necessarily constant speed.

Proof. From formula (8.3.2), we have

d

ds

(
‖β ′‖2

)
= 2〈β ′′, β ′〉 = Lijα

i′αj
′
αk

′〈n, xk〉 = 0,

proving the lemma. �
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8.4. Geodesics on a surface of revolution

In the case of a surface of revolution, it is convenient to use the
notation u1 = θ, u2 = φ for the coordinates. For the purposes of this
section, we will replace f(φ) by r(φ). This function gives the distance
from a point on the surface, to the z-axis.

Lemma 8.4.1. The angle γ between a curve β and the latitude sat-
isfies cos γ = rθ

′

.

Proof. The tangent vector to the latitude is x1 with |x1| = r = f .
We have

cos γ =

〈
x1
|x1|

,
dβ

ds

〉
where x1 =

∂x

∂θ
(θ, φ).

Thus

cos γ =
1

|x1|
〈x1, x1θ

′

+ x2φ
′

︸ ︷︷ ︸
chain rule

〉 = θ
′

|x1|
〈x1, x1〉︸ ︷︷ ︸

|x1|2

+
φ

′

|x2|
〈x1, x2〉︸ ︷︷ ︸
g12=0

= θ
′ |x1| = rθ

′

,

proving the lemma. �

Theorem 8.4.2. Let x = r(φ) cos θ, y = r(φ) sin θ, and z = g(φ)
be the components of a surface of revolution. Then the geodesic equa-
tion for k = 1 is equivalent to Clairaut’s relation r cos γ = const
(cf. Theorem 6.6.1).

Proof. The symbols for k = 1 are given by Lemma 7.12.1. We
will use the shorthand notation θ(s), φ(s) respectively for α1(s), α2(s).
Let ′ = d

ds
. The equation of geodesic β = x ◦ α for k = 1 becomes

0 = θ′′ + 2Γ1
12θ

′φ′

= θ′′ +
2r dr

dφ

r2
θ
′

φ
′

= r2θ′′ + 2r
dr

dφ
θ
′

φ
′

= (r2θ
′

)
′

.

Integrating, we obtain
r2θ

′

= const. (8.4.1)

Since the curve β is constant speed by Lemma 8.3.5, we can assume
the paramenter s is arclength.

By Lemma 8.4.1 we have r cos γ = r2θ
′

= const from (8.4.1), prov-
ing Clairaut’s relation. �
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The rest of the material in this section is optional.
In the case of a surface of revolution, the geodesic equation can be

integrated by means of primitives :

1 =

〈
dx

ds
,
dx

ds

〉
= 〈x1θ

′

+ x2φ
′

, x1θ
′

+ x2φ
′〉

= g11(θ
′

)2 + g22(φ
′

)2 = f 2(θ
′

)2 +




(
df

dφ

)2

+

(
dg

dφ

)2

︸ ︷︷ ︸
g22


 (φ

′

)2.

Thus, 1 = f 2

(
dθ

ds

)2

+ g22

(
dφ

ds

)2

. Now multiply by

(
ds

dθ

)2

:

(
ds

dθ

)2

= f 2 + g22

(
dφ

ds

ds

dθ

)2

= f 2 + g22

(
dφ

dθ

)2

.

Now from Clairaut’s relation we have

ds

dθ
=
f 2

c
,

hence we obtain the formula f4

c2
= f 2 + g22

(
dφ
dθ

)2
or

1

c2
=

1

f 2
+
g22
f 4

(
dφ

dθ

)2

which is the equation (6.7.1) for a geodesic on the sphere. Furthermore,
we have

dφ

dθ
=

√
f4

c2
− f 2

g22
=
f

c

√√√√
f 2 − c2

(
df
dφ

)2
+
(
dg
dφ

)2 .

Thus

θ = c

∫
1

f

√√√√
(
df
dφ

)2
+
(
dg
dφ

)2

f 2 − c2
dφ+ const.

Example 8.4.3. On S2, we have f(φ) = sin φ, g(φ) = cosφ, thus
we obtain

θ = c

∫
dφ

sinφ
√

sin2 φ− c2
+ const,

which is the equation of a great circle in spherical coordinates.
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Following some preliminaries on areas, directional derivatives, and
Hessians, we will deal with a central object in the differential geom-
etry of surfaces in Euclidean space, namely the Weingarten map, in
Section 9.4.

8.5. Polar, cylindrical, spherical coordinates; integration

In this section, we review material from calculus on polar, cylindri-
cal, and spherical coordinates.

The polar coordinates (r, θ) in the plane arise naturally in complex
analysis (of one complex variable).

Definition 8.5.1. Polar coordinates (koordinatot koteviot) (r, θ)
satisfy r2 = x2 + y2 and x = r cos θ, y = r sin θ.

It is shown in elementary calculus that the area of a region D in
the plane in polar coordinates is calculated using the area element

dA = r dr dθ.

Thus, an integral is of the form∫

D

dA =

∫∫
rdrdθ.

Cylindrical coordinates in Euclidean 3-space are studied in Vector
Calculus.

Definition 8.5.2. Cylindrical coordinates (koordinatot gliliot)

(r, θ, z)

are a natural extension of the polar coordinates (r, θ) in the plane.

The volume of an open region D is calculated with respect to cylin-
drical coordinates using the volume element

dV = r dr dθ dz.

Namely, an integral is of the form∫

D

dV =

∫∫∫
rdr dθ dz.

Example 8.5.3. Find the volume of a right circular cone with
height h and base a circle of radius b.

Spherical coordinates2

(ρ, θ, ϕ)

in Euclidean 3-space are studied in Vector Calculus.

2koordinatot kaduriot
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Definition 8.5.4. Spherical coordinates (ρ, θ, ϕ) are defined as fol-
lows. The coordinate ρ is the distance from the point to the origin,
satisfying

ρ2 = x2 + y2 + z2,

or ρ2 = r2+z2, where r2 = x2+y2. If we project the point orthogonally
to the (x, y)-plane, the polar coordinates of its image, (r, θ), satisfy x =
r cos θ and y = r sin θ. The last coordiate ϕ of the spherical coordinates
is the angle between the position vector of the point and the third basis
vector e3 in 3-space (pointing upward along the z-axis). Thus

z = ρ cosϕ

while

r = ρ sinϕ .

Here we have the bounds 0 ≤ ρ, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π
(note the different upper bounds for θ and ϕ). Recall that the area of
a spherical region D is calculated using a volume element of the form

dV = ρ2 sinϕ dρ dθ dϕ,

so that the volume of a region D is
∫

D

dV =

∫∫∫

D

ρ2 sinϕ dρ dθ dϕ .

Example 8.5.5. Calculate the volume of the spherical shell between
spheres of radius ρ0 > 0 and ρ1 ≥ ρ0.

The area of a spherical region on a sphere of radius ρ = ρ1 is
calculated using the area element

dA = ρ21 sinϕ dθ dϕ .

Thus the area of a spherical region D on a sphere of radius ρ1 is given
by the integral

∫

D

dA =

∫∫
ρ21 sinϕ dθ dϕ = ρ21

∫∫
sinϕ dθ dϕ

Example 8.5.6. Calculate the area of the spherical region on a
sphere of radius ρ1 contained in the first octant, (so that all three
Cartesian coordinates are positive).
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8.6. Measuring area on surfaces

Definition 8.6.1 (Computation of area). The area of the sur-
face x : U → R3 is computed by integrating the expression

√
det(gij)du

1du2 (8.6.1)

over the domain U of the map x. Thus area(x) =
∫
U

√
det(gij)du

1du2.

The presence of the square root in the formula is explained in in-
finitesimal calculus in terms of the Gram matrix, cf. (5.7.1).

Example 8.6.2. Consider the parametrisation given by spherical
coordinates on the unit sphere. Then the integrand is

sinϕ dθ dϕ,

and we recover the formula familiar from calculus for the area of a
region D on the unit sphere:

area(D) =

∫∫

D

sinϕ dθ dϕ .



CHAPTER 9

Directional derivative and Weingarten map

9.1. Directional derivative

We will represent a vector v in the Rn plane as the velocity vec-
tor v = dα

dt
of a curve α(t), at t = 0. Typically we will be interested in

the case n = 3 (or 2).

Definition 9.1.1. Given a function f of n variables, its directional
derivative1 ∇vf at a point p, in the direction of a vector v is defined
by setting

∇vf =
d (f ◦ α(t))

dt

∣∣∣∣
t=0

.

Lemma 9.1.2. The definition of directional derivative is indepen-
dent of the choice of the curve α(t) representing the vector v.

Proof. The lemma is proved in Elementary calculus [Ke74]. �

Let p = x(u1, u2) be a point of a surface in R3.

Definition 9.1.3. The tangent plane to the surface x = x(u1, u2)
at the point p is denoted Tp and is defined “naively” to be the plane
passing through p and spanned by vectors x1 and x2, or alternatively
as the plane perpendicular to the normal vector n at p.

Thus we have an orthogonal decomposition

R
3 = Tp

⊥
⊕Rn.

Example 9.1.4. Suppose x(u1, u2) is a parametrisation of the unit
sphere S2 ⊂ R3. At a point (a, b, c) ∈ S2, the normal vector is the

position vector itself: n =



a
b
c


. In other words, n(u1, u2) = x(u1, u2).

1nigzeret kivunit

83
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9.2. Extending vector field along surface to open set in R3

Now let us return to the set-up

R
t
→
α

R
2

(u1,u2)
→
x
R

3.

We consider the curve β = x ◦ α. Let v ∈ Tp be a tangent vector at a

point p ∈M , defined by v = dβ
dt

∣∣
t=0

, where β(0) = p. By chain rule, v =
dαi

dt
xi. The normal vector n ◦α(t) along β(t) varies from point to point

on the surface, but is not defined in an open neighnorhood in R3.
We would like to extned it to a vector field in an open neighborhood
of p ∈ R3. The curve β represents the class of curves with initial
vector v.

Lemma 9.2.1. the gradient ∇F of a function F = F (x, y, z) is
perpendicular to the level surface F (x, y, z) = 0 of F .

This was shown in elementary calculus.

Theorem 9.2.2. Consider a regular parametrisation x(u1, u2) as
before, as well as its normal vector n = n(u1, u2). One can extend n to
a vector field N(x, y, z) defined in an open neighborhood of p ∈ R

3, so
that we have

n(u1, u2) = N
(
x(u1, u2)

)
. (9.2.1)

Proof. We apply a version of the implicit function theorem for
surfaces to represent the surface implicitly by an equation F (x, y, z) =
0, where F is defined in an open neighborhood of p ∈M , and ∇F 6= 0
at p. By Lemma 9.2.1, the normalisation

1

|∇F |∇F

of the gradient ∇F of F gives the required extension. �

Proposition 9.2.3. Let p ∈ M , and v ∈ TpM where v = β ′(0).
Let N be the vector field extending n(u1, u2). Then the directional de-
rivative ∇vN satisfies

∇vN =
d (n ◦ α(t))

dt

∣∣∣∣
t=0

.

Proof. By (9.2.1), the function n(t) satisfies the relation

n(α(t)) = N(β(t)),

where β = x ◦ α. The gradient ∇vN can be calculated using this
particular curve β. By Lemma 9.1.2, the gradient is independent of
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the choice of the curve. We therefore obtain

∇vN =
d (N ◦ β(t))

dt
=
d (n ◦ α(t))

dt
,

proving the proposition. �

9.3. Hessian of a function at a critical point

Consider a function f(x, y) of two variables in the neighborhood of
a critical point, where ∇f = 0, and consider its graph.

Remark 9.3.1. The tangent plane of the graph of f at a critical
point of f is a horizontal plane.

The Hessian (matrix of second derivatives) of the function at the
critical point captures the main features of the behavior of the function
in a neighborhood of the critical point. Thus, we have the following
typical result concerning the surface given by the graph of the function
in R3.

Theorem 9.3.2. At a critical point of f , assume that the eigenval-
ues of the Hessian are nonzero. If the eigenvalues of the Hessian have
opposite sign, then the graph of f is a saddle point. If the eigenvalues
have the same sign, the graph is a local minimum or maximum.

Remark 9.3.3. If one thinks of the Hessian as a linear transforma-
tion (an endomorphism) of the horizontal plane, given by the matrix
of second derivatives, then the Hessian of a function at a critical point
becomes a special case of the Weingarten map, defined in the next
section.

9.4. From Hessian to Weingarten map

Now consider the more general framework of a parametrized regular
surface M in R

3.

Remark 9.4.1. Instead of working with a matrix of second deriva-
tives, we will give a definition of an endomorphism of the tangent plane
in a coordinate-free fashion.

We extend n to a vector field N(x, y, z) defined in an open neigh-
borhood of p ∈ R3, so that we have

n(u1, u2) = N
(
x(u1, u2)

)
.

Definition 9.4.2. Let p ∈ M . Denote by TpM its tangent plane
at p. The Weingarten map (also known as the shape operator)

Wp : Tp → Tp
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is the endomorphism of the tangent plane given by directional deriva-
tive of the extension N of n:

W (v) = ∇vN =
d

dt

∣∣∣∣
t = 0

n ◦ α(t), (9.4.1)

where β = x ◦ α is chosen so that β(0) = p while β ′(0) = v.

Lemma 9.4.3. The map W is well defined.

Proof. We have to show that the right hand side of formula (9.4.1),
which is a priori a vector in R3, indeed produces a vector in the tangent
plane. By Leibniz’s rule,

〈W (v), n〉 = 〈∇vN, n〉 =
1

2

d

dt
〈n ◦ α(t), n ◦ α(t)〉 = 0,

and therefore W (v) indeed lies in Tp, proving the lemma. �

The connection with the Hessian is given in the following theorem.

Theorem 9.4.4. The operator W is a selfadjoint endomorphism of
the tangent plane Tp, and satisfies

〈W (xi), xj〉 = −
〈
n,

∂2x

∂ui∂uj

〉
.

Proof. As in the definition of the Weingarten map, ∇vN is the
derivative of N along a curve with initial vector v. We can choose the
curve

γ(t) = x(t, a).

Then we have γ′(t) = x1. Therefore

∇x1N =
∂n

∂u1

by definition of the directional derivative. Thus the coordinate lines x(u1, a)
and x(b, u2) of the chart (u1, u2) allow us to write ∇xjN = ∂

∂uj
n. There-

fore we have

〈W (xi), xj〉 =
〈
∂n

∂ui
, xj

〉

=
∂

∂ui
〈n, xj〉 − 〈n, ∂

∂ui
xj〉

= −
〈
n,

∂2x

∂ui∂uj

〉
,

which is an expression symmetric in i and j. This proves the selfad-
jointness of W by verifying it for a set of basis vectors. �

Theorem 9.4.5. The eigenvalues of the Weingarten map are real.
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This is immediate from the fact that the endomorphism Wp of TpM
is selfadjoint.

Definition 9.4.6. The principal curvatures, denoted k1 and k2, are
the eigenvalues of the Weingarten map W .

This will be discussed in more detail in the next chapter, around
Definition 10.2.9.

Example 9.4.7. Consider the plane x(u1, u2) = (u1, u2, 0). We
have x1 = e1, x2 = e2, while the normal vector field n

n =
x1 × x2
(x1 × x2)

= e1 × e2 = e3

is constant. It can therefore be extended to a constant vector field N
defined in an open neighborhood in R3. Thus ∇vN ≡ 0 andW (v) ≡ 0,
and the Weingarten map is identically zero.

In the next section we will present nonzero examples of the Wein-
garten map.

9.5. Weingarten map of sphere and cylinder

Lemma 9.5.1. The Weingarten map of the sphere of radius r > 0
at every point p of the sphere is the scalar map Tp → Tp given by

1

r
Id =

1

r
IdTp ,

where Id is the identity map of Tp.

Proof. On the sphere, we have n ◦ α(t) = 1

r
β(t). Hence

W (v) = ∇vN(β(t))

=
d

dt

∣∣∣∣∣
t = 0

n ◦ α(t)

=
1

r

d

dt

∣∣∣∣∣
t = 0

β(t)

=
1

r
v.

Thus W (v) =
1

r
v for all v. In other words, W =

1

r
Id. �

Note that the Weingarten map has rank 2 in this case.
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Example 9.5.2. For the cylinder, we have the parametrisation

x(u1, u2) = (cos u1, sin u1, u2),

and n = (cos u1, sin u1, 0). As before, this can be extended to a vec-
tor field N defined in an open neighborhood in R3, with the usual
relation ∇x1N = ∂

∂u1
n. Hence we have

∇x1N =
∂

∂u1
n = (− sin u1, cos u1, 0). (9.5.1)

Similarly,

∇x2N =
∂

∂u2
n = (0, 0, 0). (9.5.2)

Now let v = vixi be an arbitrary tangent vector. Therefore

∇vN = ∇vixiN = v1∇x1N + v2∇x2N

by linearity. Hence (9.5.1) and (9.5.2) yield

∇vN = v1∇x1N = v1



− sin u1

cos u1

0


 ,

and therefore,

W (v) = v1



− sin u1

cos u1

0


 = v1x1,

where v = vixi. Thus, W (x1) = x1, while W (x2) = 0.
Note that the Weingarten map has rank 1 in this case.

9.6. Coefficients Lij of Weingarten map

Since the two vectors (x1, x2) from a basis of the tangent plane Tp,
we may introduce the following definition.

Definition 9.6.1. The coefficients Lij of the Weingarten map are
defined by

W (xj) = Lijxi.

Example 9.6.2. For the plane, we have (Lij) ≡ 0, for the sphere,

(Lij) =

(
1
r

0
0 1

r

)
=

1

r
δij.

For the cylinder, we have L1
1 = 1. The remaining coefficients vanish,

so that

(Lij) =

(
1 0
0 0

)
.
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9.7. Gaussian curvature

We continue with the terminology and notation of the previous
section.

Definition 9.7.1. TheGaussian curvature functionK = K(u1, u2)
of the surface x is the determinant of the Weingarten map :

K = det(Lij) = L1
1L

2
2 − L1

2L
2
1 = 2L1

[1L
2
2]

(the skew-symmetrisation notation was defined in 1.7).

Example 9.7.2. Cylinder, plane K = 0, cf. Figure 11.6.1. For a

sphere of radius r, we have K = det

(
1
r

0
0 1

r

)
=

1

r2
.

Remark 9.7.3 (Sign of Gaussian curvature). Of particular geomet-
ric significance is the sign of the Gaussian curvature. The geometric
meaning of negative Gaussian curvature is a saddle point. The geo-
metric meaning of positive Gaussian curvature is a point of convexity,
such as local minimum or local maximum of the graph of a function of
two variables.





CHAPTER 10

Second fundamental form, theorema egregium

10.1. Second fundamental form

Definition 10.1.1. The second fundamental form IIp is the bilin-
ear form on the tangent plane Tp defined for u, v ∈ Tp by

IIp(u, v) = −〈∇un, v〉.

It may be helpful to keep in mind the observation that the second
fundamental form measures the curvature of geodesics on x viewed as
curves of R3 (cf. 3.7.1) as illustrated by Theorem 10.2.1 below.

Definition 10.1.2. The coefficients Lij of the second fundamental
form are defined to be

Lij = II(xi, xj) = −
〈
∂n

∂ui
, xj

〉
.

Lemma 10.1.3. The coefficients Lij of the second fundamental form
are symmetric in i and j, more precisely Lij = +〈xij, n〉.

Proof. We have 〈n, xi〉 = 0. Hence ∂
∂uj

〈n, xi〉 = 0, i.e.

〈
∂

∂uj
n, xi

〉
+ 〈n, xij〉 = 0

or

〈n, xij〉 = −〈∇xjn, xi〉 = +II(xj, xi)

and the proof is concluded by the equality of mixed partials. �

Lemma 10.1.4. The second fundamental form allows us to identify
the normal component of the second partials of the map x, namely: xij =
Γkijxk + Lijn.

Proof. Let xij = Γkijxk+ cn and form the inner product with n to
obtain Lij = 〈xij, n〉 = 0 + c〈n, n〉 = c. �

91
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10.2. Geodesics and second fundamental form

Theorem 10.2.1. Let β(s) be a unit speed geodesic on the surface
in R3, so that β ′(s) ∈ TpM where p = β(s). Then

|II(β ′, β ′)| = kβ(s),

where kβ is the curvature of β as a curve in R
3.

Proof. We apply formula (8.3.2). Since |n| = 1, we have

kβ
def
= |β ′′| = |Lijαi′αj ′|.

Also

II(β ′, β ′) = II(xiα
i′, xjα

j ′) = αi
′
αj

′
II(xi, xj) = αi

′
αj

′
Lij,

completing the proof. �

Proposition 10.2.2. We have the following relation between the
Weingarten map and the second fundamental form:

Lij = −Lkjgki.
Proof. By definition,

Lij = 〈xij, n〉 = −
〈

∂

∂uj
n, xi

〉
= −〈Lkjxk, xi〉 = −Lkjgki.

�

10.2.1. Normal and geodesic curvatures. The material in this
subsection is optional.

Let x(u1, u2) be a surface in R3. Let α(s) = (α1(s), α2(s)) a curve
in R2, and consider the curve β = x ◦ α on the surface x. Consider
also the normal vector to the surface, denoted n. The tangent unit
vector β ′ = dβ

ds
is perpendicular to n, so β ′, n, β ′ × n are three unit

vector spanning R3. As β ′ is a unit vector, it is perpendicular to β ′′,
and therefore β ′′ is a linear combination of n and β ′ × n. Thus

β ′′ = knn+ kg(β
′ × n),

where kn, kg ∈ R are called the normal and the geodesic curvature
(resp.). Note that

kn = β ′′ · n, kg = β ′′ · (β ′ × n).

If k is the curvature of β, then we have that k2 = ||β ′′||2 = k2n + k2g .

Exercise 10.2.3. Let β(s) be a unit speed curve on a sphere of
radius r. Then the normal curvature of β is ±1/r.
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Remark 10.2.4. Let π be a plane passing through the center of the
sphere S in Exercise 10.2.3, and Let C = π ∩ S. Then the curvature k
of C is 1/r, and thus kg = 0. On the other hand, if π does not pass
through the center of S (and π ∩ S 6= ∅) then the geodesic curvature of
the intersection 6= 0.

Proposition 10.2.5. If a unit speed curve β on a surface is geo-
desic then its geodesic curvature is kg = 0.

Proof. If β is a geodesic, then β ′′ is parallel to the normal vector n,
so it is perpendicular to n×β ′′, and therefore kg = β ′′ ·(n×β ′′) = 0. �

Exercise 10.2.6. The inverse direction of Proposition 10.2.5 is
also correct. Prove it.

Example 10.2.7. Any line γ(t) = at+ b on a surface is a geodesic,
as γ′′ = 0 and therefore kg = 0.

Example 10.2.8. Take a cylinder x of radius 1 and intersect it with
a plane π parallel to the xy plane. Let C = x ∩ π - it is a circle of
radius 1. Thus k = 1. Show that kn = 1 and thus C is a geodesic.

Definition 10.2.9. The principal curvatures, denoted k1 and k2,
are the eigenvalues of the Weingarten map W .

Assume k1 > k2.

Theorem 10.2.10. The minimal and maximal values of the abso-
lute value of the normal curvature |kn| at a point p of all curves on a
surface passing through p are |k2| and |k1|.

Proof. This is proven using the fact that kg = 0 for geodesic
curves and from Theorem 3.9.4?1 �

10.3. Calculus of variations and the geodesic equation

Calculus of variations is known as tachsiv variatsiot.
Let α(s) = (α1(s), α2(s)), and consider the curve β = x ◦ α on the

surface :

[a, b]
s

α→R
2 x→R

3.

Consider the energy functional

E(β) =
∫ b

a

‖β ′‖2ds.

1See which theorem this is.
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Here ′ =
d

ds
. We have

dβ

ds
= xi(α

i)
′

by chain rule. Thus

E(β) =
∫ b

a

〈β ′, β ′〉ds =
∫ b

a

〈
xiα

i′, xjα
j ′
〉
ds =

∫ b

a

gijα
i′αj

′
ds.

(10.3.1)
Consider a variation α(s) → α(s) + tδ(s), t small, such that δ(a) =
δ(b) = 0. If β = x◦α is a critical point of E , then for any perturbation δ
vanishing at the endpoints, the following derivative vanishes:

0 =
d

dt

∣∣∣∣∣
t = 0

E(x ◦ (α+ tδ))

=
d

dt

∣∣∣∣∣
t = 0

{∫ b

a

gij(α
i + tδi)

′

(αj + tδj)
′

ds

}
(from equation (10.3.1))

=

∫ b

a

∂ (gij ◦ (α+ tδ))

∂t
αi

′

αj
′

ds

︸ ︷︷ ︸
A

+

∫ b

a

gij
(
αi

′

δj
′

+ αj
′

δi
′)
ds

︸ ︷︷ ︸
B

,

so that we have

A +B = 0. (10.3.2)

We will need to compute both the t-derivative and the s-derivative of
the first fundamental form. The formula is given in the lemma below.

Lemma 10.3.1. The partial derivatives of gij = gij ◦ (α(s) + tδ(s))
along β = x ◦ α are given by the following formulas:

∂

∂t
(gij ◦ (α + tδ)) = (〈xik, xj〉+ 〈xi, xjk〉)δk,

and
∂gik
∂s

= (〈xim, xk〉+ 〈xi, xkm〉)(αm)
′

.

Proof. We have

∂

∂t
(gij ◦ (α+ tδ)) =

∂

∂t
〈xi ◦ (α + tδ)), xj ◦ (α+ tδ)〉

=

〈
∂

∂t
(xi ◦ (α + tδ)), xj

〉
+

〈
xi,

∂

∂t
(xj ◦ (α + tδ))

〉

= 〈xikδk, xj〉+ 〈xi, xjkδk〉 = (〈xik, xj〉+ 〈xi, xjk〉)δk.

Furthermore, g
′

ik = 〈xi, xk〉′ = 〈xim(αm)′, xk〉+ 〈xi, xkm(αm)′〉. �
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Lemma 10.3.2. Let f ∈ C0[a, b]. Suppose that for all g ∈ C0[a, b]

we have
∫ b
a
f(x)g(x)dx = 0. Then f(x) ≡ 0. This conclusion remains

true if we use only test functions g(x) such that g(a) = g(b) = 0.

Proof. We try the test function g(x) = f(x). Then
∫ b
a
(f(x))2ds =

0. Since (f(x))2 ≥ 0 and f is continuous, it follows that f(x) ≡ 0. If
we want g(x) to be 0 at the endpoints, it suffices to choose g(x) =
(x− a)(b− x)f(x). �

Theorem 10.3.3. Suppose β = x◦α is a critical point of the energy
functional (endpoints fixed). Then β satisfies the differential equation

(∀k) (αk)
′′
+ Γkij(α

i)
′
(αj)

′
= 0.

Proof. We use Lemma 10.3.1 to evaluate the term A from equa-
tion (10.3.2) as follows:

A =

∫ b

a

(〈xik, xj〉+ 〈xi, xjk〉)(αi)
′

(αj)
′

δkds

= 2

∫ b

a

〈xik, xj〉αi
′

αj
′

δkds,

since summation is over both i and j. Similarly,

B = 2

∫ b

a

gijα
i
′

δj
′

ds

= −2

∫ b

a

(
gijα

i
′
)′

δjds

by integration by parts, where the boundary term vanishes since δ(a) =
δ(b) = 0. Hence

B = −2

∫ b

a

(
gikα

i′
)′
δkds

by changing an index of summation. Thus

1

2

d

dt

∣∣∣∣∣
t=0

(E) =
∫ b

a

{
〈xik, xj〉αi′αj ′ −

(
gikα

i′
)′}

δkds.

Since this is true for any variation (δk), by Lemma 10.3.2 we obtain
the Euler-Lagrange equation

(∀k) 〈xik, xj〉αi′αj ′ −
(
gikα

i′
)′

≡ 0,

or

〈xik, xj〉αi′αj ′ − gik
′αi

′ − gikα
i′′ = 0. (10.3.3)
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Using the formula from Lemma 10.3.1 for the s-derivative of the
first fundamental form, we can rewrite the formula (10.3.3) as follows:

0 = 〈xik, xj〉αi
′

αj
′

− 〈xim, xk〉αm
′

αi
′

− 〈xi, xkm〉αi
′

αm
′ − gikα

i
′′

= −〈Γnimxn, xk〉αm
′

αi
′

− gikα
i
′′

= −Γnimgnkα
m′

αi
′

− gikα
i
′′

,

where the cancellation of the first and the third term in the first line
results from replacing index i by j and m by i in the third term. This
is true ∀k. Now multiply by gjk :

gjkΓnimgnkα
m′

αi
′

+ gjkgikα
i
′

= δjnΓ
n
imα

m′

αi
′

+ δjiα
i
′′

= Γjimα
m′

αi
′

+ αj
′′

= 0,

which is the desired geodesic equation. �

10.4. Three formulas for Gaussian curvature

Remark 10.4.1. Throughout this Chapter, we will make use of
the Einstein summation convention, i.e. suppress the summation sym-
bol

∑
when the summation index occurs simultaneously as a subscript

and a superscript in a formula, cf. (11.4.1).

Theorem 10.4.2. We have the following three equivalent formulas
for the Gaussian curvature:

(a) K = det(Lij) = 2L1
[1L

2
2];

(b) K =
det(Lij)

det(gij)
;

(c) K = − 2
g11
L1[1L

2
2].

Proof. The first formula is our definition of K. To prove the sec-
ond formula, we use the formula Lij = −Lkjgki of Proposition 10.2.2.
By the multiplicativity of determinant with respect to matrix multipli-
cation,

det(Lij) = (−1)2
det(Lij)

det(gij)
.
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Let us now prove formula (c). The proof is a calculation. Note that by
definition, 2L1[1L

2
2] = L11L

2
2 − L12L

2
1. Hence

− 2

g11

(
L1[1L

2
2]

)
=

1

g11

((
L1

1g11 − L2
1g21

)
L2

2 −
(
L1

2g11 − L2
2g21

)
L2

1

)

=
1

g11

(
g11L

1
1L

2
2 − g21L

2
1L

2
2 − g11L

1
2L

2
1 + g21L

2
2L

2
1

)

= det(Li j) = K.

Note that we can either calculate using the formula Lij = −Lkjgki, or
the formula Lij = −Lkigkj. Only the former one leads to the appropri-
ate cancellations as above. �

10.5. Principal curvatures

Definition 10.5.1. The principal curvatures, denoted k1 and k2,
are the eigenvalues of the Weingarten map W .

Remark 10.5.2. The curvatures k1 and k2 are real. This follows
from the selfadjointness of W (Theorem 9.4.4) and Corollary 2.2.2.

Theorem 10.5.3. The Gaussian curvature equals the product of the
principal curvatures.

Proof. The determinant of a 2 by 2 matrix equals the product of
its eigenvalues: K = det(Lij) = k1k2. �

Theorem 10.5.4. Let v be a unit eigenvector belonging to a prin-
cipal curvature k. Let β(s) be a geodesic satisfying β ′(0) = v. Then
the curvature of β as a space curve is the absolute value of k :

kβ(0) = |k|.
Proof. Let v = vixi be a unit eigenvector of W represented by

a curve β(t) = x ◦ α(t), so that vi = αi
′
. The eigenvector prop-

erty W (v) = kv translates into

Lijv
j = kvi. (10.5.1)

As before we may write β = x ◦ α. Meanwhile, by Theorem 10.2.1, we
have

±kβ = II(β ′, β ′)

= Lijα
i
′

αj
′

= Lijv
ivj

= −Lmjgmivivj

=
(
−Lmjvj

)
gmiv

i.
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Therefore from equation (10.5.1) we obtain

±kβ = −k vmgmivi

= −k ‖v‖2
= −k,

proving the theorem. �

Corollary 10.5.5. Gaussian curvature at a point p of a regular
surface in R3 is the product of curvatures of two perpendicular geodesics
passing through p, whose tangent vectors are eigenvectors of the Wein-
garten map at the point.



CHAPTER 11

Minimal surfaces, Theorema egregium

11.1. Minimal surfaces

Definition 11.1.1. The Mean curvature H is half the trace of the

Weingarten map: H =
1

2
(k1 + k2) =

1

2
Lii, cf. Table 11.6.1.

A surface x(u1, u2) is called minimal if H = 0 at every point,
i.e. k1 + k2 = 0. Geometrically, such a surface is represented by a
soap film1 see Figure 11.1.1.

Definition 11.1.2. A parametrisation x(u1, u2) is called isothermal
if there is a function f = f(u1, u2) such that gij = f 2δij, i.e. 〈x1, x1〉 =
〈x2, x2〉 and 〈x1, x2〉 = 0.

1krum sabon, as opposed to bu’at sabon. Dip a wire (tayil) into soapy water.

Figure 11.1.1. Helicoid: a minimal surface

99
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Proposition 11.1.3. Assume x is isothermal. Then it satisfies the
partial differential equation

x11 + x22 = −2f 2Hn.

Proof. Note

Lij = −Lmjgmi = −Lmjf 2δmi = −f 2Lij.

Thus

Lij = −Lij
f 2

so that the mean curvature H satisfies

H =
1

2
Lii = −L11 + L22

2f 2
. (11.1.1)

Since 〈x1, x2〉 = 0, we have
∂

∂u2
〈x1, x2〉 = 0. Therefore

〈x12, x2〉+ 〈x1, x22〉 = 0. (11.1.2)

So −〈x12, x2〉 = 〈x1, x22〉. By Definition 11.1.2, we have

〈x1, x1〉 − 〈x2, x2〉 = 0.

From formula (11.1.2) we obtain

0 =
∂

∂u1
〈x1, x1〉 −

∂

∂u1
〈x2, x2〉

= 2〈x11, x1〉 − 2〈x21, x2〉
= 2〈x11, x1〉+ 2〈x22, x1〉
= 2〈x11 + x22, x1〉.

Inspecting the u2-derivatives, we similarly obtain 〈x11 + x22, x2〉 = 0.
Since x1, x2 and n form an orthogonal basis, x11 + x22 is proportional
to n. Write x11 + x22 = cn. Applying (11.1.1), we obtain

c = 〈x11 + x22, n〉
= 〈x11, n〉+ 〈x22, n〉
= L11 + L22

= −2f 2H,

as required. �

Definition 11.1.4. Let F : R2 → R, (u1, u2) 7→ F (u1, u2). The
Laplacian, denoted ∆(F ), is the second-order differential operator on
functions, defined by

∆F =
∂2F

∂(u1)2
+

∂2F

∂(u2)2
.
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Functions in the kernel of the Laplacian are called harmonic.

Definition 11.1.5. We say that F is harmonic if ∆F = 0.

Harmonic functions are important in the study of heat flow, or heat
transfer (ma’avar chom).

Corollary 11.1.6. Let x(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2))
in R3 be a parametrized surface and assume that x is isothermal. Then x
is minimal if and only if the coordinate functions x, y, z are harmonic.

Proof. From Proposition 11.1.3 we have

‖∆(x)‖ =
√

(∆x)2 + (∆y)2 + (∆z)2 = 2f 2|H|,
proving the corollary. �

Example 11.1.7. The catenoid is parametrized as follows:

x(θ, φ) = (a coshφ cos θ, a coshφ sin θ, aφ).

Here f(φ) = a cosh φ, while g(φ) = aφ. Then g11 = a2 cosh2 φ =
f 2, g22 = (a sinhφ)2 + a2 = a2 cosh2 φ = f 2, g12 = 0. Calculate:

x11 + x22 = (−a cosh φ cos θ,−a cosh φ sin θ, 0)
+ (a coshφ cos θ, a coshφ sin θ, 0)

= (0, 0, 0).

Thus the catenoid is a minimal surface. In fact, it is the only surface
of revolution which is minimal [We55, p. 179].

11.2. Introduction to theorema egregium; intrinsic vs

extrinsic

Some of the material in this chapter has already been covered in
earlier chapters. We include such material here for the benefit of the
reader primarily interested in understanding Gaussian curvature.

The present Chapter is an introduction to Gaussian curvature. Un-
derstanding the intrinsic nature of Gaussian curvature, i.e. the theo-
rema egregium of Gauss, clarifies the geometric classification of sur-
faces. A beautiful historical account and an analysis of Gauss’s proof
of the theorema egregium may be found in [Do79].2

We present a compact formula for Gaussian curvature and its proof,
along the lines of the argument in M. do Carmo’s book [Ca76]. The

2Our formula (11.6.2) for Gaussian curvature is similar to the traditional for-
mula for the Riemann curvature tensor in terms of the Levi-Civita connection (note
the antisymmetrisation in both formulas, and the corresponding two summands),
without the burden of the connection formalism.
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appeal of an old-fashioned, computational, coordinate notation proof is
that it obviates the need for higher order objects such as connections,
tensors, exponental map, etc, and is, hopefully, directly accessible to a
student not yet familiar with the subject, cf. Remark 11.7.4.

We would like to distinguish two types of properties of a surface
in Euclidean space: intrinsic and extrinsic. Understanding the extrin-
sic/intrinsic dichotomy is equivalent to understanding the theorema
egregium of Gauss. The theorema egregium is the key insight lying at
the foundation of differential geometry as conceived by B. Riemann
in his essay [Ri1854] presented before the Royal Scientific Society of
Göttingen a century and a half ago.

The theorema egregium asserts that an infinitesimal invariant of a
surface in Euclidean space, called Gaussian curvature, is an “intrinsic”
invariant of the surface Σ. In other words, Gaussian curvature of Σ
is independent of its isometric imbedding in Euclidean space. This
theorem paves the way for an intrinsic definition of curvature in modern
Riemannian geometry.

We will prove that Gaussian curvature K is an intrinsic invariant
of a surface in Euclidean space, in the following precise sense: K can
be expressed in terms of the coefficients of the first fundamental form
(see Section ) and their derivatives alone. A priori the possibility of
thus expressing K is not obvious, as the naive definition of K involves
the coefficients of the second fundamental form (alternatively, of the
Weingarten map).

11.3. Riemann’s formula

The intrinsic nature of Gaussian curvature paves the way for a
transition from classical differential geometry, to a more abstract ap-
proach of modern differential geometry. The distinction can be de-
scribed roughly as follows. Classically, one studies surfaces in Euclidean
space. Here the first fundamental form (gij) of the surface is the restric-
tion of the Euclidean inner product. Meanwhile, abstractly, a surface
comes equipped with a set of coefficients, which we deliberately denote
by the same letters, (gij) in each coordinate patch, or equivalently, its
element of length. One then proceeds to study its geometry without
any reference to a Euclidean imbedding, cf. (16.4.2).

Such an approach was pioneered in higher dimensions in Riemann’s
essay. The essay contains a single formula [Ri1854, p. 292] (cf. [Sp79,
p. 147]), namely the formula for the element of length of a surface of
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constant (Gaussian) curvature K ≡ α:

1

1 + α
4

∑
x2

√∑
dx2 (11.3.1)

(today, of course, we would incorporate a summation index as part of
the notation), cf. formulas (16.4.3), (16.17.1), and (17.3.1).

11.4. Preliminaries to the theorema egregium

The material in this section has mostly been covered already in
earlier chapters.

Definition 11.4.1. Given a surface Σ in 3-space which is the graph
of a function of two variables, consider a critical point p ∈ Σ. The
Gaussian curvature of the surface at the critical point p is the de-
terminant of the Hessian of the function, i.e. the determinant of the
two-by-two matrix of its second derivatives.

The implicit function theorem allows us to view any point of a
regular surface, as such a critical point, after a suitable rotation. We
have thus given the simplest possible definition of Gaussian curvature
at any point of a regular surface.

Remark 11.4.2. The appeal if this definition is that it allows one
immediately to grasp the basic distinction between negative versus
positive curvature, in terms of the dichotomy “saddle point versus
cup/cap”.

It will be more convenient to use an alternative definition in terms
of the Weingarten map, which is readily shown to be equivalent to
Definition 11.4.1.

We denote the coordinates in R2 by (u1, u2). In R3, let 〈 , 〉 be the
Euclidean inner product. Let x = x(u1, u2) : R2 → R

3 be a regular
parametrized surface. Here “regular” means that the vector valued
function x has differential dx of rank 2 at every point. Consider partial
derivatives xi =

∂
∂ui

(x), where i = 1, 2. Thus, vectors x1 and x2 form a
basis for the tangent plane at every point. Similarly, let

xij =
∂2x

∂ui∂uj
∈ R

3.

Let n = n(u1, u2) be a unit normal to the surface at the point x(u1, u2),
so that 〈n, xi〉 = 0.

Definition 11.4.3 (symbols gij, Lij, Γ
k
ij). The first fundamental

form (gij) is given in coordinates by gij = 〈xi, xj〉. The second fun-
damental form (Lij) is given in coordinates by Lij = 〈n, xij〉. The



104 11. MINIMAL SURFACES, THEOREMA EGREGIUM

symbols Γkij are uniquely defined by the decomposition

xij = Γkijxk + Lijn

= Γ1
ijx1 + Γ2

ijx2 + Lijn,
(11.4.1)

where the repeated (upper and lower) index k implies summation, in ac-
cordance with the Einstein summation convention, cf. Remark 10.4.1.

Definition 11.4.4 (symbols Lij). The Weingarten map (Lij) is an
endomorphism of the tangent plane, namely Rx1 ⊕Rx2. It is uniquely
defined by the decomposition

nj = Lijxi

= L1
jx1 + L2

jx2,

where nj =
∂
∂uj

(n).

Definition 11.4.5. We will denote by square brackets [ ] the anti-
symmetrisation over the pair of indices found in between the brackets,
e.g.

a[ij] =
1
2
(aij − aji).

Note that g[ij] = 0, L[ij] = 0, and Γk[ij] = 0. We will use the

notation Γkij;` for the `-th partial derivative of the symbol Γkij.

11.5. An identity involving the Γkij and the Lij

The following technical result will imply the theorema egregium as
an easy consequence.

Proposition 11.5.1. We have the following relation

Γqi[j;k] + Γmi[j Γ
q
k]m = −Li[jLqk]

for each set of indices i, j, k, q (with, as usual, an implied summation
over the index m).

Proof. Let us calculate the tangential component, with respect to
the basis {x1, x2, n}, of the third partial derivative

xijk =
∂3x

∂ui∂uj∂uk
.

Recall that nk = Lpkxp and xjk = Γ`jkx` + Likn. Thus, we have

(xij)k =
(
Γmijxm + Lijn

)
k

= Γmij;kxm + Γmijxmk + Lijnk + Lij;kn

= Γmij;kxm + Γmij

(
Γpmkxp + Lmkn

)
+ Lij (L

p
kxp) + Lij;kn.
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Grouping together the tangential terms, we obtain

(xij)k = Γmij;kxm + Γmij

(
Γpmkxp

)
+ Lij (L

p
kxp) + (. . .)n

=
(
Γqij;k + ΓmijΓ

q
mk + LijL

q
k

)
xq + (. . .)n

=
(
Γqij;k + ΓmijΓ

q
km + LijL

q
k

)
xq + (. . .)n,

since the symbols Γqkm are symmetric in the two subscripts. Now the
symmetry in j, k (equality of mixed partials) implies the following iden-
tity: xi[jk] = 0. Therefore

0 = xi[jk]

= (xi[j)k]

=
(
Γqi[j;k] + Γmi[jΓ

q
k]m + Li[jL

q
k]

)
xq + (. . .)n,

and therefore Γqi[j;k] + Γmi[jΓ
q
k]m + Li[jL

q
k] = 0 for each q = 1, 2. �

11.6. The theorema egregium of Gauss

Recall from Section 10.4 that we have K = − 2
g11
L1[1L

2
2], where by

definition

K = det(Lij) = 2L1
[1L

2
2]. (11.6.1)

Theorem 11.6.1 (Theorema egregium). The Gaussian curvature
function K = K(u1, u2) can be expressed in terms of the coefficients of
the first fundamental form alone (and their first and second derivatives)
as follows:

K =
2

g11

(
Γ2
1[1;2] + Γj1[1Γ

2
2]j

)
, (11.6.2)

where the symbols Γkij can be expressed in terms of the derivatives of gij
be the formula Γkij =

1
2
(gi`;j − gij;` + gj`;i)g

`k, where (gij) is the inverse
matrix of (gij).

Proof of theorema egregium. We present a streamlined version of
do Carmo’s proof [Ca76, p. 233]. The proof is in 3 steps.

(1) We express the third partial derivative xijk in terms of the Γ’s
(intrinsic information) and the L’s (extrinsic information).

(2) The equality of mixed partials yields an identification of a suit-
able expression in terms of the Γ’s, with a certain combination
of the L’s.

(3) The combination of the L’s is expressed in terms of Gaussian
curvature.
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Weingarten
map (Lij)

Gaussian cur-
vature K

mean cur-
vature H

plane

(
0 0
0 0

)
0 0

cylinder

(
1 0
0 0

)
0 1

2

invariance
of curvature

yes no

Table 11.6.1. Plane and cylinder have the same intrinsic
geometry (K), but different extrinsic geometries (H)

The first two steps were carried out in Proposition 11.5.1. We
choose the valus i = j = 1 and k = q = 2 for the indices. Applying
Theorem 10.4.2(c), we obtain

Γ2
1[1;2] + Γm1[1Γ

2
2]m = −L1[1L

2
2]

= g1iL
i
[1L

2
2]

= g11L
1
[1L

2
2]

since the term L2
[1L

2
2] = 0 vanishes. This yields the desired formula

for K and complete the proof of the theorema egregium. �

Remark 11.6.2. Unlike Gaussian curvature K, the mean curva-
ture H = 1

2
Lii cannot be expressed in terms of the gij and their deriva-

tives. Indeed, the plane and the cylinder have parametrisations with
identical gij, but with different mean curvature, cf. Table 11.6.1. To
summarize, Gaussian curvature is an intrinsic invariant, while mean
curvature an extrinsic invariant, of the surface.

11.7. The Laplacian formula for Gaussian curvature

A (u1, u2) chart in which the metric becomes conformal (see Defi-
nition 16.7.1) to the standard flat metric, is referred to as isothermal
coordinates. The existence of the latter is proved in [Bes87].

Definition 11.7.1. The Laplace-Beltrami operator for a metric λδij
in isothermal coordinates is

∆LB =
1

λ

(
∂2

∂(u1)2
+

∂2

∂(u2)2

)
.
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Γ1
ij j = 1 j = 2

i = 1 µ1 µ2

i = 2 µ2 −µ1

Γ2
ij j = 1 j = 2

i = 1 −µ2 µ1

i = 2 µ1 µ2

Table 11.7.1. Symbols Γkij of a metric e2µ(u
1 ,u2)δij

The notation means that when we apply the operator ∆LB to a
function f = f(u1, u2), we obtain

∆LB(f) =
1

λ

(
∂2f

∂(u1)2
+

∂2f

∂(u2)2

)
.

In more readable form for f = f(x, y), we have

∆LB(f) =
1

λ

(
∂2f

∂x2
+
∂2f

∂y2

)
.

Theorem 11.7.2. Given a metric in isothermal coordinates with
metric coefficients gij = λ(u1, u2)δij, its Gaussian curvature is minus
half the Laplace-Beltrami operator applied to the log of the conformal
factor λ:

K = −1

2
∆LB logλ. (11.7.1)

Proof. Let λ = e2µ. We have from Table 11.7.1:

2Γ2
1[1;2] = Γ2

11;2 − Γ2
12;1 = −µ22 − µ11.

It remains to verify that the ΓΓ term in the expression (11.6.2) for the
Gaussian curvature vanishes:

2Γj1[1Γ
2
2]j = 2Γ1

1[1Γ
2
2]1 + 2Γ2

1[1Γ
2
2]2

= Γ1
11Γ

2
21 − Γ1

12Γ
2
11 + Γ2

11Γ
2
22 − Γ2

12Γ
2
12

= µ1µ1 − µ2(−µ2) + (−µ2)µ2 − µ1µ1

= 0.

Then from formula (11.6.2) we have

K =
2

λ
Γ2
1[1;2] = −1

λ
(µ11 + µ22) = −∆LBµ.

Meanwhile, ∆LB log λ = ∆LB(2µ) = 2∆LB(µ), proving the result. �

Setting λ = f 2, we restate the theorem as follows.
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Theorem 11.7.3. Given a metric in isothermal coordinates with
metric coefficients gij = f 2(u1, u2)δij, its Gaussian curvature is minus
the Laplace-Beltrami operator of the log of the conformal factor f :

K = −∆LB log f. (11.7.2)

Either one of the formulas (11.6.2), (11.7.1), or (11.7.2) can serve
as the intrinsic definition of Gaussian curvature, replacing the extrinsic
definition (11.6.1), cf. Remark 11.3.

Remark 11.7.4. For a reader familiar with elements of Riemannian
geometry, it is worth mentioning that the Jacobi equation

y′′ +Ky = 0

of a Jacobi field y on M (expressing an infinitesimal variation by
geodesics) sheds light on the nature of curvature in a way that no
mere formula for K could.

Thus, in positive curvature, geodesics converge, while in negative
curvature, they diverge.

However, to prove the Jacobi equation, one would need to have al-
ready an intrinsically well-defined quantity on the left hand side, y ′′ +
Ky, of the Jacobi equation. In particular, one would need an already
intrinsic notion of curvature K. Thus, a proof of the theorema egregium
necessarily precedes the deeper insights provided by the Jacobi equa-
tion.

Similarly, the Gaussian curvature at p ∈ M is the first significant
term in the asymptotic expansion of the length of a “small” circle of
center p. This fact, too, sheds much light on the nature of Gaussian
curvature. However, to define what one means by a “small” circle, re-
quires introducing higher order notions such as the exponential map,
which are usually understood at a later stage than the notion of Gauss-
ian curvature, cf. [Ca76, Car92, Ch93, GaHL04].



CHAPTER 12

Gauss–Bonnet theorem

12.1. Binet–Cauchy identity

Theorem 12.1.1 (Binet–Cauchy identity). The 3-dimensional case
of the Binet–Cauchy identity is the identity

(a · c)(b · d) = (a · d)(b · c) + (a× b) · (c× d),

where a, b, c, and d are vectors in R
3.

The formula can also be written as a formula giving the dot product
of two wedge products, namely

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c),
Theorem 12.1.2 (Special case of Binet–Cauchy). In the special

case of unit vectors a = c and b = d, we obtain

|a× b|2 = |a|2|b|2 − |a · b|2.
Corollary 12.1.3. Let a, b be the two tangent vectors x1, x2. Then

|x1 × x2|2 = g11g22 − g212 = det(gij).

When both vectors are unit vectors, we obtain the usual relation

1 = cos2(φ) + sin2(φ)

where φ is the angle between the vectors.

12.2. Area elements of the surface and of the sphere

Consider an orientable surfaces Σ imbedded in 3-space. By the
Binet–Cauchy identity 12.1.1, we have

√
det(gij) =

∣∣x1 × x2
∣∣ ,

where xi =
∂x
∂ui

.

Definition 12.2.1. The area element dAΣ of the surface Σ is

dAΣ =
√

det(gij)du
1du2 = |x1 × x2|du1du2 (12.2.1)

where the gij are the metric coefficients of the surface with respect to
the parametrisation x(u1, u2).
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This notion of area is discussed in more detail in Section 16.6.
We have used the subscript Σ so as to specify which surface we are

dealing with.
An orientable surface by definition admits unit normal vector N =

Np, at each point p ∈ Σ. The vector field N is a globally defined field
on the surface. Note that the image vector N can be thought of as an
element of the unit sphere:

Np ∈ S2.

Each point p ∈ Σ lies in a neighborhood parametrized by x(u1, u2). At
a point p = x(u1, u2), we have a normal vector

Np = Nx(u1,u2).

The unit normal vector n(u1, u2), obtained by normalizing the vector
product x1 × x2, coincides with the globally selected normal N :

n(u1, u2) = Nx(u1,u2).

Theorem 12.2.2. If Gaussian curvature is nonzero at a point p =
x(u10, u

2
0) ∈ Σ of the surface, then the map n(u1, u2) from Σ to S2 pro-

duces a regular parametrisation of a neighborhood of a given point n(u1
0, u

2
0) ∈

S2 on the sphere.

Proof. The parametrisation is given by the map to the sphere
whose Jacobian is the Weingarten map. Regularity follows from the
fact that Gaussian curvature is the determinant of the Weingarten map,
hence nonzero by hypothesis. Hence the vectors n1 and n2 are linearly
independent. �

Note that we are no longer thinking of n is a normal to the original
surface Σ, but rather as a parametrisation of an open neighborhood on
the unit sphere. Now consider the area element of the unit sphere.

Theorem 12.2.3. Consider a parametrisation n(u1, u2) of a neigh-
borhood on the sphere S2 as in Theorem 12.2.2. Then the area ele-
ment dAS2 can be expressed as

dAS2 =
√

det(g̃αβ)du
1du2 = |n1 × n2|du1du2,

where g̃αβ are the metric coefficients of the parametrisation n(u1, u2)

of the sphere, and ni =
∂n(u1,u2)

∂ui
.

Proof. This is the usual formula for surfaces, applied to the chosen
parametrisation n(u1, u2) as defined in Theorem 12.2.2, in place of the
traditional x(u1, u2). �
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Remark 12.2.4. We have used the subscript to distinguish the
area element dAS2 of the sphere S2 from the area element dAΣ of the
surface Σ as in (12.2.1), where the gij are the metric coefficients of the
surface with respect to the parametrisation x(u1, u2). Note that we
need to distinguish the two area elements

dAS2 and dAΣ

because both will occur in the proof of the Gauss–Bonnet theorem.

12.3. Proof of Gauss-Bonnet theorem

The Gauss–Bonnet theorem for surfaces is to a certain extent anal-
ogous to the theorem on the total curvature of a plane curve (Theo-
rem 4.6.2). In both cases, an integral of curvature turns out to have
topological significance.

In the notation of the previous section, we have the metric coeffi-
cients (gij) of the parametrisation x(u1, u2) of the surface Σ, as well as
the metric coefficients (g̃α,β) of the sphere relative to the parametrisa-
tion n(u1, u2) stemming from the normal of Σ.

Lemma 12.3.1. We have the identity

det(g̃αβ) =
(
K(u1, u2)

)2
det(gij)

where K = K(u1, u2) is the Gaussian curvature of the surface Σ.

Proof. Let L = (Lij) be the matrix of W with respect to the
basis (x1, x2). By definition of curvature we have K = det(L). Recall
that the coefficients Lij of the Weingarten map are defined by

nα = Liαxi = xiL
i
α. (12.3.1)

Consider the 3 × 2-matrices A = [x1 x2] and B = [n1 n2]. Then
(12.3.1) implies by definition that

B = AL.

Therefore the Gram matrices satisfy

Gram(n1, n2) = BtB = (AL)tAL = LtAtAL = Lt Gram(x1, x2) L.

Applying the determinant, we complete the proof of the theorem. �

Note that by the Cauchy-Binet formula, the desired identity is
equivalent to the formula

|nu1 × nu2 | = |det(Lij)| |xu1 × xu2 |, (12.3.2)

immediate from the observation that a linear map multiplies the area
of parallelograms by its determinant. Namely, the Weingarten map
sends each vector xi to ni.
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Theorem 12.3.2 (Special case of Gauss-Bonnet). Let Σ be a convex
closed surface in R3, i.e., an imbedded closed surface of positive Gauss-
ian curvature (a typical example is an ellipsoid). Then the curvature
integral satisfies ∫

Σ

K(p) dAΣ = 4π = 2χ(S2),

where K is the Gaussian curvature function defined at every point p of
the surface.

Proof. The convexity of the surface guarantees that the map n is
one-to-one (compare with the proof of Theorem 4.5.2 on closed curves).

We examine the integrand K dAΣ in a coordinate chart (u1, u2)
where it can be written as K(u1, u2) dAΣ. By Lemma 12.3.1, we have

K(u1, u2) dAΣ = K(u1, u2)
√
det(gij)du

1du2 =
√

det(g̃αβ)du
1du2 = dAS2.

Thus, the expression K dAΣ coincides with the area element dAS2 of
the unit sphere S2 in every coordinate chart. Hence we can write∫

Σ

K dAΣ =

∫

S2

dAS2 = 4π,

proving the theorem. �

12.4. Euler characteristic

The Euler characteristic of a closed imbedded surface in Euclidean
3-space can be defined via the total Gaussian curvature.

Definition 12.4.1. The Euler characteristic χ(Σ) of a surface Σ is
defined by the relation

2πχ(Σ) =

∫

Σ

K(p)dAΣ. (12.4.1)

The relation (12.4.1) is similar to the line intergal expression for
the rotation index in formula (5.1.1). To show that this definition of
the Euler characteristic agrees with the usual one, it is necessary to
use the notion of algebraic degree for maps between surfaces, similar
to the algebraic degree of a self-map of a circle.



CHAPTER 13

Duality in algebra, calculus, and geometry

13.1. Duality in linear algebra

The theorema egregium of Gauss marks the transition from classi-
cal differential geometry of curves and surfaces imbedded in 3-space,
to modern differential geometry of surfaces (and manifolds) studied in-
trinsically. To formulate the intrinsic viewpoint, one needs the notion
of duality of vector and covector.

Let V be a real vector space. We will assume all vector spaces to
be finite dimensional unless stated otherwise. Euclidean space Rn is an
example of a real vector space of dimension n.

Example 13.1.1. The tangent plane TpM of a regular surface M
at a point p ∈ M is a real vector space of dimension 2.

Definition 13.1.2. A linear form, also called 1-form, φ on V is a
linear functional

φ : V → R.

Example 13.1.3. In the usual plane of vectors

v = v1e1 + v2e2

represented by arrows, we denote by dx the 1-form which extracts the
abscissa of the vector, and by dy the 1-form which extracts the ordinate
of the vector:

dx(v) = v1,

and
dy(v) = v2.

Thus, for a vector v = 3e1 + 4e2 with components (3, 4) we obtain

dx(v) = 3, dy(v) = 4.

Definition 13.1.4. We similarly define the corresponding qua-
dratic forms dx2 and dy2, by squaring the value of the 1-form on on v.
Such quadratic forms are called rank-1 quadratic forms.

Thus,
dx2(v) = (v1)2, dy2(v) = (v2)2;

113
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in the particular example v = 3e1+4e2 we obtain dx
2(v) = 9, dy2(v) =

16.

Definition 13.1.5. The dual space of V , denoted V ∗, is the space
of all linear forms on V :

V ∗ = {φ | φ is a 1-form on V } .
Evaluating φ at an element x ∈ V produces a scalar φ(x) ∈ R.

Definition 13.1.6. The evaluation map is the natural pairing be-
tween V and V ∗, namely a linear map denoted

〈 , 〉 : V × V ∗ → R,

defined by evaluating y at x, i.e., setting 〈x, y〉 = y(x), for all x ∈ V
and y ∈ V ∗.

Remark 13.1.7. Note we are using the same notation for the pair-
ing as for the scalar product in Euclidean space. The notation is quite
widespread.

Definition 13.1.8. If V admits a basis of vectors (xi), then the
dual space V ∗ admits a unique basis, called the dual basis (yj), satis-
fying

〈xi, yj〉 = δij, (13.1.1)

for all i, j = 1, . . . , n, where δij is the Kronecker delta function.

Example 13.1.9. Let V = R2. We have the usual basis e1, e2 for V .
The 1-forms dx, dy form a basis for the dual space V ∗.

13.2. Duality in calculus; derivations

Let E be a Euclidean space of dimension n, and let p ∈ E be a
fixed point.

Definition 13.2.1. Let

Dp = {f : f ∈ C∞}
be the space of real C∞-functions f defined in a neighborhood of p ∈ E.

Note that Dp is infinite-dimensional as it includes all polynomials.

Theorem 13.2.2. A partial derivative ∂
∂ui

at p a 1-form

∂

∂ui
: Dp → R

on the space Dp, satisfying Leibniz’s rule

∂(fg)

∂ui

∣∣∣∣
p

=
∂f

∂ui

∣∣∣∣
p

g(p) + f(p)
∂g

∂ui

∣∣∣∣
p

. (13.2.1)
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The formula can be written briefly as

∂
∂ui

(fg) = ∂
∂ui

(f)g + f ∂
∂ui

(g),

at the point p. This was proved in calculus. Formula (13.2.1) motivates
the following more general definition of a derivation.

Definition 13.2.3. A derivation X at p is an R-linear 1-form

X : Dp → R

on the space Dp satisfying Leibniz’s rule:

X(fg) = X(f)g(p) + f(p)X(g) (13.2.2)

for all f, g ∈ Dp.

Remark 13.2.4. Linearity of a derivation is required only with
regard to scalars in R, not functions.

The following two results are familiar from advanced calculus.

Proposition 13.2.5. Let E be an n-dimensional Euclidean space,
and p ∈ E. Then the space of all derivations at p is a vector space of
dimension n.

Proof. We will prove the result in the case of a single variable u
at the point p = 0 (the general case is similar).

Let X be a derivation. Then

X(1) = X(1 · 1) = 2X(1)

by Leibniz’s rule. Therefore X(1) = 0, and similarly for any constant
by linearity of X.

Now consider the monic polynomial u = u1 of degree 1, i.e., the
linear function

u ∈ Dp=0.

We evaluate the derivation X at u and set c = X(u).
By the Taylor remainder formula, any function f ∈ Dp=0 can be

written as

f(u) = a+ bu+ g(u)u

where g is smooth and g(0) = 0. Now we have by linearity

X(f) = X(a+ bu+ g(u)u)

= bX(u) +X(g)u(0) + g(0) · 1
= bc + 0 + 0

= c
∂

∂u
(f).
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Thus X coincides with c ∂
∂u

for all f ∈ Dp. Hence the tangent space is
1-dimensional, proving the theorem in this case. �

Definition 13.2.6. The space of derivations at p is called the tan-
gent space Tp = TpE at p.

Proposition 13.2.7. Let (u1, . . . , un) define coordinates for E.
Then a basis for the tangent space Tp is given by the n partial deriva-
tives (

∂

∂ui

)
, i = 1, . . . , n.

Definition 13.2.8. The space dual to the tangent space Tp is called
the cotangent space, and denoted T ∗

p .

Thus an element of a tangent space is a vector, while an element of
a cotangent space is called a 1-form, or a covector.

Definition 13.2.9. The basis dual to the basis
(
∂
∂ui

)
is denoted

(duj), j = 1, . . . , n.

Thus each duj is by definition a linear form, or cotangent vector
(covector for short). We are therefore working with dual bases

(
∂
∂ui

)

for vectors, and (duj) for covectors. The evaluation map as in (13.1.1)
gives 〈

∂

∂ui
, duj

〉
= duj

(
∂

∂ui

)
= δji , (13.2.3)

where δji is the Kronecker delta.

13.3. Constructing bilinear forms out of 1-forms

Recall that the polarisation formula (see definition 1.5.4) allows
one to reconstruct a symmetric bilinear form B = B(v, w), from the
quadratic form Q(v) = B(v, v), at least if the characteristic is not 2:

B(v, w) =
1

4
(Q(v + w)−Q(v − w)). (13.3.1)

Similarly, one can construct bilinear forms out of the 1-forms dui,
as follows. Consider a quadratic form defined by a linear combination
of the rank-1 quadratic forms (dui)2, as in Definition 13.1.4. Polarizing
the quadratic form, one obtains a bilinear form on the tangent space Tp.

Example 13.3.1. Let v = v1e1 + v2e2 be an arbitrary vector in the
plane. Let dx and dy be the standard covectors, extracting, respec-
tively, the first and second coordinates of v. Consider the quadratic
form Q given by

Q = Edx2 + Fdy2.
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Here Q(v) is calculated as

Q(v) = E(dx(v))2 + F (dy(v))2 = E(v1)2 + F (v2)2.

Polarisation then produces the bilinear form B = B(v, v′), where v
and v′ are arbitrary vectors, given by the formula

B(v, v′) = E dx(v) dx(v′) + F dy(v) dy(v′).

Example 13.3.2. Setting E = F = 1 in the previous example, we
obtain the standard scalar product in the plane:

B(v, v′) = v · v′ = dx(v) dx(v′) + dy(v) dy(v′) = v1v
′
1 + v2v

′
2.

13.4. First fundamental form

Recall that the first fundamental form g is a symmetric bilinear
form on the tangent space at p:

g : Tp × Tp → R,

defined for all p and varying continuously and smoothly in p.
Recall that the basis for Tp in coordinates (ui) is given by the tan-

gent vectors
∂

∂ui
.

These are given by certain derivations (see Section 13.2).
The first fundamental form g is traditionally expressed by a matrix

of coefficients called metric coefficients gij, given by the inner product
of the i-th and the j-th vector in the basis:

gij = g

(
∂

∂ui
,
∂

∂uj

)
,

where g is the first fundamental form. In particular, the coefficient

gii =

∥∥∥∥
∂

∂ui

∥∥∥∥
2

is the square length of the i-th vector.
We will express the first fundamental form in more intrinsic notation

of quadratic forms built from 1-forms (covectors).

13.5. Dual bases in differential geometry

Let us now restrict attention to the case of 2 dimensions, i.e. the
case of surfaces. At every point p = (u1, u2), we have the metric coef-
ficients gij = gij(u

1, u2). Each metric coefficient is thus a function of
two variables.
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We will only consider the case when the matrix is diagonal. This can
always be achieved, in two dimensions, at a point by a suitable change
of coordinates, by the uniformisation theorem (see Section 13.6). We
set x = u1 and y = u2 to simplify notation. In the notation developed
in Section 13.3, we can write the first fundamental form as follows:

g = g11(x, y)(dx)
2 + g22(x, y)(dy)

2. (13.5.1)

For example, if the metric coefficients form an identity matrix: gij =
δij, we obtain the standard flat metric

g = (dx)2 + (dy)2 . (13.5.2)

or simply as

g = dx2 + dy2.

Example 13.5.1 (Hyperbolic metric). Let g11 = g22 = 1
y2
. The

resulting hyperbolic metric in the upperhalf plane {y > 0} is expressed
by the quadratic form

1

y2
(
dx2 + dy2

)
.

(note that this expression is undefined for y = 0). The hyperbolic
metric in the upper half plane is a complete metric.

13.6. Uniformisation theorem

Closely related results are the Riemann mapping theorem and the
conformal representation theorem.

Theorem 13.6.1 (Riemann mapping/uniformisation). Every met-
ric on a connected1 surface is conformally equivalent to a metric of
constant Gaussian curvature.

From the complex analytic viewpoint, the uniformisation theorem
states that every Riemann surface is covered by either the sphere, the
plane, or the upper halfplane. Thus no notion of curvature is needed for
the statement of the uniformisation theorem. However, from the dif-
ferential geometric point of view, what is relevant is that every confor-
mal class of metrics contains a metric of constant Gaussian curvature.
See [Ab81] for a lively account of the history of the uniformisation
theorem.

1kashir
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13.7. Surfaces of revolution in isothermal coordinates

The uniformisation theorem as stated it in Section 13.6 is an exis-
tence theorem. It does not not provide an explicit recipee as to how
one would go about finding a representation of the surface in terms
of a metric of constant curvature, together with a suitable conformal
factor.

In this chapter we describe an explicit presentation of this kind in
the case of tori of revolution.

We will make use of the differential notation for metrics developed
in earlier chapters.

The following lemma expresses the metric of a surface of revolu-
tion in isothermal coordinates. Recall that if a surface is obtained by
revolving a curve (f(φ), g(φ)), we obtain metric coefficients g11 = f 2

and g22 =
(
df
dφ

)2
+
(
dg
dφ

)2
.

In other words, the metric can be written as

f 2dθ2 +

((
df
dφ

)2
+
(
dg
dφ

)2)
dφ2. (13.7.1)

Lemma 13.7.1. Consider an arc length parametrisation (f(φ), g(φ)),
where f(φ) > 0, of the generating curve of a surface of revolution. Then
the change of variable

ψ =

∫
1

f(φ)
dφ,

produces an isothermal parametrisation in terms of variables (θ, ψ).
With respect to the new coordinates, the first fundamental form is given
by a scalar matrix (gij) = (f(φ(ψ))2δij), i.e. the metric is

f(φ(ψ))2(dθ2 + dψ2).

In other words, we obtain an explicit conformal equivalence between
the metric on the surface of revolution and the standard flat metric on
the quotient of the (θ, ψ) plane. Such coordinates are referred to as
“isothermal coordinates” in the literature. The existence of such a
parametrisation is of course predicted by the uniformisation theorem
(Theorem 13.6.1) in the case of a general surface.

Proof. Consider an arbitrary change of parameter φ = φ(ψ). By
chain rule,

df

dψ
=
df

dφ

dφ

dψ
.

Now consider again the first fundamental form (13.7.1). To impose the

condition g11 = g22, we need to solve the equation f 2 =
(
df
dψ

)2
+
(
dg
dψ

)2
,



120 13. DUALITY IN ALGEBRA, CALCULUS, AND GEOMETRY

or

f 2 =

((
df

dφ

)2

+

(
dg

dφ

)2
)(

dφ

dψ

)2

.

In the case when the generating curve is parametrized by arclength, we
are therefore reduced to the equation

f =
dφ

dψ
,

or ψ =
∫

dφ
f(φ)

. Substituting the new variable φ(ψ) in place of φ in

the parametrisation of the surface, we obtain a new parametrisation of
the surface of revolution in coordinates (θ, ψ), such that the matrix of
metric coefficients is a scalar matrix by construction. �



CHAPTER 14

Tori, residues

14.1. More on dual bases

Recall that if (x1, . . . , xn) is a basis for a vector space V then the
dual vector space V ∗ possesses a basis called the dual basis and de-
noted (y1, . . . , yn) satisfying 〈xi, yj〉 = yj(xi) = δij.

Example 14.1.1. In R2 we have a basis (x1, x2) =
(
∂
∂x
, ∂
∂y

)
in the

tangent plane Tp at a point p. The dual basis of 1-forms (y1, y2) for T
∗
p

is denoted (dx, dy). Thus we have
〈
∂

∂x
, dx

〉
= dx

(
∂

∂x

)
= 1

and 〈
∂

∂y
, dy

〉
= dy

(
∂

∂y

)
= 1,

while 〈
∂

∂x
, dy

〉
= dy

(
∂

∂x

)
= 0,

etcetera.

Similarly, in polar coordinates at a point p 6= 0 we have a basis(
∂
∂r
, ∂
∂θ

)
for Tp, and a dual basis (dr, dθ) for T ∗

p . Thus we have
〈
∂

∂r
, dr

〉
= dr

(
∂

∂r

)
= 1

and 〈
∂

∂θ
, dθ

〉
= dθ

(
∂

∂θ

)
= 1,

while 〈
∂

∂r
, dθ

〉
= dθ

(
∂

∂r

)
= 0,

etcetera.

121
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Now in polar coordinates we have a natural area element r dr dθ.
Areas are calculated by Fubini’s theorem as

∫∫

D

r dr dθ =

∫ (∫
rdr

)
dθ.

Thus we have a natural basis (y1, y2) = (rdr, dθ) in T ∗
p when p 6= 0,

i.e., y1 = rdr while y2 = dθ. Its dual basis (x1, x2) in Tp can be easily
identified. It is

(x1, x2) =

(
1

r

∂

∂r
,
∂

∂θ

)
.

Indeed, we have

〈x1, y1〉 =
〈
1

r

∂

∂r
, rdr

〉
= rdr

(
1

r

∂

∂r

)
= r

1

r
dr

(
∂

∂r

)
= 1,

etcetera.

14.2. Conformal parameter τ of tori of revolution

The results of Section 13.7 have the following immediate conse-
quence.

Corollary 14.2.1. Consider a torus of revolution in R
3 formed

by rotating a Jordan curve of length L > 0, with unit speed param-
etisation (f(φ), g(φ)) where φ ∈ [0, L]. Then the torus is conformally
equivalent to a flat torus

R
2/Lc,d.

Here R2 is the (θ, ψ)-plane, where ψ is the antiderivative of 1
f(φ)

as in

Section 13.7; while the rectangular lattice Lc,d ⊂ R2 is spanned by the
orthogonal vectors c ∂

∂θ
and d ∂

∂ψ
, so that

Lc,d = Span

(
c
∂

∂θ
, d

∂

∂ψ

)
= cZ⊕ dZ,

where c = 2π and d =
∫ L
0

dφ
f(φ)

.

In Section 6.2 we showed that every flat torus C/L is similar to
the torus spanned by τ ∈ C and 1 ∈ C, where τ is in the standard
fundamental domain

D = {z = x + iy ∈ C : |x| ≤ 1
2
, y > 0, |z| ≥ 1}.

Then τ is called the conformal parameter of the torus.
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Figure 14.2.1. Torus: lattice (left) and imbedding (right)

Corollary 14.2.2. The conformal parameter τ of a torus of rev-
olution is pure imaginary:

τ = iσ2

of absolute value

σ2 = max

{
c

d
,
d

c

}
≥ 1.

Proof. The proof is immediate from the fact that the lattice is
rectangular. �

14.3. θ-loops and φ-loops on tori of revolution

Consider a torus of revolution (T 2, g) generated by a Jordan curve C
in the (x, z)-plane, i.e., by a simple loop C, parametrized by a pair of
functions f(φ), g(φ), so that x = f(φ) and z = g(φ).

Definition 14.3.1. A φ-loop on the torus is a simple loop obtained
by fixing the coordinate θ (i.e., the variable φ is changing). A θ-loop
on the torus is a simple loop obtained by fixing the coordinate φ (i.e.,
the variable θ is changing).

Proposition 14.3.2. All φ-loops on the torus of revolution have
the same length equal to the length L of the generating curve C (see
Corollary 14.2.1).

Proof. The surface is rotationally invariant. In other words, all
rotations around the z-axis are isometries. Therefore all φ-loops have
the same length. �



124 14. TORI, RESIDUES

Proposition 14.3.3. The θ-loops on the torus of revolution have
variable length, depending on the φ-coordinate of the loop. Namely, the
length is 2πx = 2πf(φ).

Proof. The proof is immediate from the fact that the function f(φ)
gives the distance r to the z-axis. �

Definition 14.3.4. We denote by λφ the (common) length of all
φ-loops on a torus of revolution.

Definition 14.3.5. We denote by λθmin
the least length of a θ-

loop on a torus of revolution, and by λθmax
the maximal length of such

a θ-loop.

14.4. Tori generated by round circles

Let a, b > 0. We assume a > b so as to obtain tori that are imbedded
in 3-space. We consider the 2-parameter family ga,b of tori of revolution
in 3-space with circular generating loop. The torus of revolution ga,b
generated by a round circle is the locus of the equation

(r − a)2 + z2 = b2, (14.4.1)

where r =
√
x2 + y2. Note that the angle θ of the cylindrical coordi-

nates (r, θ, z) does not appear in the equation (14.4.1). The torus is
obtained by rotating the circle

(x− a)2 + z2 = b2 (14.4.2)

around the z-axis in R3. The torus admits a parametrisation in terms
of the functions1 f(φ) = a + b cosφ and g(φ) = b sinφ. Namely, we
have

x(θ, φ) = ((a + b cosφ) cos θ, (a + b cosφ) sin θ, b sin φ). (14.4.3)

Here the θ-loop (see Section 14.3) has length 2π(a + b cosφ). The
shortest θ-loop is therefore of length

λθmin
= 2π(a− b),

and the longest one is

λθmax
= 2π(a+ b).

Meanwhile, the φ-loop has length

λφ = 2πb.

1We use φ here and ϕ for the modified arclength parameter in the next section
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14.5. Conformal parameter of tori of revolution, residues

We would like to compute the conformal parameter τ of the stan-
dard tori as in (14.4.3). We first modify the parametrisation so as to
obtain a generating curve parametrized by arclength:

f(ϕ) = a+ b cos
ϕ

b
, g(ϕ) = b sin

ϕ

b
, (14.5.1)

where ϕ ∈ [0, L] with L = 2πb.

Theorem 14.5.1. The corresponding flat torus is given by the lat-
tice L in the (θ, ψ) plane of the form

L = SpanZ

(
c
∂

∂θ
, d

∂

∂φ

)

where c = 2π and

d =
2π√

(a/b)2 − 1
.

Thus the conformal parameter τ of the flat torus satisfies

τ = imax
(
((a/b)2 − 1)−1/2, ((a/b)2 − 1)1/2

)
.

Proof. By Corollary 14.2.2, replacing ϕ by ϕ(ψ) produces isother-
mal coordinates (θ, ψ) for the torus generated by (14.5.1), where

ψ =

∫
dϕ

f(ϕ)
=

∫
dϕ

a + b cos ϕ
b

,

and therefore the flat metric is defined by a lattice in the (θ, ψ) plane
with c = 2π and

d =

∫ L=2πb

0

dϕ

a+ b cos ϕ
b

.

Changing the variable to to φ = ϕ
b
we obtain

d =

∫ 2π

0

dφ

(a/b) + cosφ
,

where a/b > 1. Let a′ = a/b. Now the integral is the real part Re of
the complex integral

d =

∫ 2π

0

dφ

a′ + cos φ
=

∫
dφ

a′ +Re(eiφ)
.

Thus

d =

∫
2dφ

2a′ + eiφ + e−iφ
. (14.5.2)
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The change of variables z = eiφ yields

dφ =
−idz
z

and along the circle we have

d =

∮ −2idz

z(2a′ + z + z−1)
=

∮ −2idz

z2 + 2a′z + 1
=

∮ −2idz

(z − λ1)(z − λ2)
,

where λ1 = −a′ +
√
a′2 − 1 and λ2 = −a′ −

√
a′2 − 1. The root λ2 is

outside the unit circle. Hence we need the residue at λ1 to apply the
residue theorem. The residue at λ1 equals

Resλ1 =
−2i

λ1 − λ2
=

−2i

2
√
a′2 − 1

=
−i√
a′2 − 1

.

The integral is determined by the residue theorem in terms of the
residue at the pole z = λ1. Therefore the lattice parameter d from
Corollary 14.2.2 can be computed from (14.5.2) as

d = Re
(
2πiResλ1

)
=

2π√
(a′)2 − 1

.

proving the theorem. �



CHAPTER 15

Loewner’s systolic inequality

15.1. Definition of systole

The unit circle S1 ⊂ C bounds the unit disk D. A loop on a
surface M is a continuous map S1 →M .

A loop S1 →M is called contractible if the map f extends from S1

to the disk D by means of a continuous map F : D → M . Thus the
restriction of F to S1 is f .

The notions of contractible loops and simply connected spaces were
reviewed in more detail in Section 16.18.

A loop is called non-contractible if it is not contractible.
Given a metric g on M , we will denote by sys1(g), the infimum of

lengths, referred to as the “systole” of g, of a noncontractible loop β
in a compact, non-simply-connected Riemannian manifold (M, g):

sys1(g) = inf
β
length(β), (15.1.1)

where the infimum is over all noncontractible loops β in M . In graph
theory, a similar invariant is known as the girth [Tu47].1 See Sec-
tion 10.3 for a further discussion of the term, by its promulgator.

It can be shown that for a compact Riemannian manifold, the in-
fimum is always attained, cf. Theorem 16.10.1. A loop realizing the
minimum is necessarily a simple closed geodesic.

In systolic questions about surfaces, integral-geometric identities
play a particularly important role. Roughly speaking, there is an inte-
gral identity relating area on the one hand, and an average of energies
of a suitable family of loops, on the other. By the Cauchy-Schwarz
inequality, there is an inequality relating energy and length squared,
hence one obtains an inequality between area and the square of the
systole.

Such an approach works both for the Loewner inequality (15.2.1)
and Pu’s inequality (15.1.6) (biographical notes on C. Loewner and

1The notion of systole expressed by (15.1.1) is unrelated to the systolic arrays
of [Ku78].

127
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P. Pu appear in respectively). One can prove an inequality for the
Möbius band this way, as well [Bl61b].

Here we prove the two classical results of systolic geometry, namely
Loewner’s torus inequality as well as Pu’s inequality for the real pro-
jective plane.

15.1.1. Three systolic invariants. The material in this section
is optional.

LetM be a Riemannian manifold. We define the homology 1-systole

sys1(M) (15.1.2)

by minimizing vol(α) over all nonzero homology classes. Namely, sys1(M)
is the least length of a loop C representing a nontrivial homology
class [C] in H1(M ;Z).

We also define the stable homology systole

stsys1(M) = λ1 (H1(M)/T1, ‖ ‖) , (15.1.3)

namely by minimizing the stable norm ‖ ‖ of a class of infinite order
(see Definition 16.30.1 for details).

Remark 15.1.1. For the real projective plane, these two systolic in-
variants are not the same. Namely, the homology systole sys1 equals the
least length of a noncontractible loop (which is also nontrivial homolog-
ically), while the stable systole is infinite being defined by a minimum
over an empty set.

Recall the following example from the previous section:

Example 15.1.2. For an arbitrary metric on the 2-torus T
2, the

1-systole and the stable 1-systole coincide by Theorem 16.22.3:

sys1(T
2) = stsys1(T

2),

for every metric on T
2.

Using the notion of a noncontractible loop, we can define the ho-
motopy 1-systole

sys1(M) (15.1.4)

as the least length of a non-contractible loop in M .
In the case of the torus, the fundamental group Z2 is abelian and

torsionfree, and therefore sys1(T
2) = sys1(T

2), so that all three invari-
ants coincide in this case.
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15.1.2. Isoperimetric inequality and Pu’s inequality. The
material in this section is optional.

Pu’s inequality can be thought of as an “opposite” isoperimetric
inequality, in the following precise sense.

The classical isoperimetric inequality in the plane is a relation be-
tween two metric invariants: length L of a simple closed curve in the
plane, and area A of the region bounded by the curve. Namely, every
simple closed curve in the plane satisfies the inequality

A

π
≤
(
L

2π

)2

.

This classical isoperimetric inequality is sharp, insofar as equality is
attained only by a round circle.

In the 1950’s, Charles Loewner’s student P. M. Pu [Pu52] proved
the following theorem. Let RP2 be the real projective plane endowed
with an arbitrary metric, i.e. an imbedding in some Rn. Then

(
L

π

)2

≤ A

2π
, (15.1.5)

where A is its total area and L is the length of its shortest non-
contractible loop. This isosystolic inequality, or simply systolic inequal-
ity for short, is also sharp, to the extent that equality is attained only
for a metric of constant Gaussian curvature, namely antipodal quotient
of a round sphere, cf. Section 16.11. In our systolic notation (15.1.1),
Pu’s inequality takes the following form:

sys1(g)
2 ≤ π

2
area(g), (15.1.6)

for every metric g on RP
2. See Theorem 16.13.2 for a discussion of the

constant. The inequality is proved in Section 18.5. Pu’s inequality can
be generalized as follows. We will say that a surface is aspherical if it
is not a 2-sphere.

Theorem 15.1.3. Every aspherical surface (Σ, g) satisfies the op-
timal bound (15.1.6), attained precisely when, on the one hand, the
surface Σ is a real projective plane, and on the other, the metric g is
of constant Gaussian curvature.

The extension to aspherical surfaces follows from Gromov’s inequal-
ity (15.1.7) below (by comparing the numerical values of the two con-
stants). Namely, every aspherical compact surface (Σ, g) admits a met-
ric ball

B = Bp

(
1
2
sys1(g)

)
⊂ Σ
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of radius 1
2
sys1(g) which satisfies [Gro83, Corollary 5.2.B]

sys1(g)
2 ≤ 4

3
area(B). (15.1.7)

15.1.3. Hermite and Bergé-Martinet constants. The mate-
rial in this subsection is optional.

Most of the material in this section has already appeared in earlier
chapters.

Let b ∈ N. The Hermite constant γb is defined in one of the following
two equivalent ways:

(1) γb is the square of the biggest first successive minimum, cf. Defi-
nition 16.14.1, among all lattices of unit covolume;

(2) γb is defined by the formula

√
γb = sup

{
λ1(L)

vol(Rb/L)1/b

∣∣∣∣L ⊆ (Rb, ‖ ‖)
}
, (15.1.8)

where the supremum is extended over all lattices L in Rb with
a Euclidean norm ‖ ‖.

A lattice realizing the supremum is called a critical lattice. A crit-
ical lattice may be thought of as the one realizing the densest packing
in Rb when we place balls of radius 1

2
λ1(L) at the points of L.

The existence of the Hermite constant, as well as the existence of
critical lattices, are both nontrivial results [Ca71].

Theorem 6.3.1 provides the value for γ2.

Example 15.1.4. In dimensions b ≥ 3, the Hermite constants are
harder to compute, but explicit values (as well as the associated crit-

ical lattices) are known for small dimensions (≤ 8), e.g. γ3 = 2
1
3 =

1.2599 . . ., while γ4 =
√
2 = 1.4142 . . .. Note that γn is asymptotically

linear in n, cf. (15.1.11).

A related constant γ ′b is defined as follows, cf. [BeM].

Definition 15.1.5. The Bergé-Martinet constant γ ′
b is defined by

setting

γ′b = sup
{
λ1(L)λ1(L

∗)
∣∣L ⊆ (Rb, ‖ ‖)

}
, (15.1.9)

where the supremum is extended over all lattices L in Rb.

Here L∗ is the lattice dual to L. If L is the Z-span of vectors (xi),
then L∗ is the Z-span of a dual basis (yj) satisfying 〈xi, yj〉 = δij,
cf. relation (16.4.1).
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Thus, the constant γ′b is bounded above by the Hermite constant γb
of (15.1.8). We have γ ′1 = 1, while for b ≥ 2 we have the following
inequality:

γ′b ≤ γb ≤
2

3
b for all b ≥ 2. (15.1.10)

Moreover, one has the following asymptotic estimates:

b

2πe
(1 + o(1)) ≤ γ′b ≤

b

πe
(1 + o(1)) for b→ ∞, (15.1.11)

cf. [LaLS90, pp. 334, 337]. Note that the lower bound of (15.1.11)
for the Hermite constant and the Bergé-Martinet constant is noncon-
structive, but see [RT90] and [ConS99].

Definition 15.1.6. A lattice L realizing the supremum in (15.1.9)
or (15.1.9) is called dual-critical.

Remark 15.1.7. The constants γ ′b and the dual-critical lattices
in Rb are explicitly known for b ≤ 4, cf. [BeM, Proposition 2.13].
In particular, we have γ ′1 = 1, γ′2 =

2√
3
.

Example 15.1.8. In dimension 3, the value of the Bergé-Martinet

constant, γ′3 =
√

3
2
= 1.2247 . . ., is slightly below the Hermite con-

stant γ3 = 2
1
3 = 1.2599 . . .. It is attained by the face-centered cu-

bic lattice, which is not isodual [MilH73, p. 31], [BeM, Proposition
2.13(iii)], [CoS94].

This is the end of the three subsections containing optional material.

15.2. Loewner’s torus inequality

Historically, the first lower bound for the volume of a Riemannian
manifold in terms of a systole is due to Charles Loewner. In 1949,
Loewner proved the first systolic inequality, in a course on Riemannian
geometry at Syracuse University, cf. [Pu52]. Namely, he showed the
following result, whose proof appears in Section 18.2.

Theorem 15.2.1 (C. Loewner). Every Riemannian metric g on the
torus T2 satisfies the inequality

sys1(g)
2 ≤ γ2 area(g), (15.2.1)

where γ2 = 2√
3
is the Hermite constant (15.1.8). A metric attaining

the optimal bound (15.2.1) is necessarily flat, and is homothetic to the
quotient of C by the Eisenstein integers, i.e. lattice spanned by the cube
roots of unity, cf. Lemma 6.3.1.
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The result can be reformulated in a number of ways.2 Loewner’s
torus inequality relates the total area, to the systole, i.e. least length
of a noncontractible loop on the torus (T2, g):

area(g)−
√
3
2
sys1(g)

2 ≥ 0. (15.2.2)

The boundary case of equality is attained if and only if the metric is
homothetic to the flat metric obtained as the quotient of R2 by the
lattice formed by the Eisenstein integers.

15.3. Loewner’s inequality with defect

Loewner’s torus inequality can be strengthened by introducing a
“defect” (shegiya, she’erit) term, similar to Bonnesen’s strengthening
of the isoperimetic inequality. To write it down, we need to review the
conformal representation theorem (uniformisation theorem).

By the conformal representation theorem, we can assume that the
metric g on the torus T2 is of the form

f 2(dx2 + dy2),

with respect to a unit area flat metric dx2+dy2 on the torus T2 viewed
as a quotient R2/L of the (x, y) plane by a lattice. The defect term
in question is simply the variance (shonut) of the conformal factor f
above. The inequality with the defect term looks as follows.

Theorem 15.3.1. Every metric on the torus satisfies the following
strengthened form of Loewner’s inequality:

area(g)−
√
3
2
sys(g)2 ≥ Var(f). (15.3.1)

Here the error term, or isosystolic defect, is given by the variance3

Var(f) =

∫

T
2

(f −m)2 (15.3.2)

of the conformal factor f of the metric g = f 2(dx2 + dy2) on the torus,
relative to the unit area flat metric g0 = dx2+dy2 in the same conformal
class. Here

m =

∫

T
2

fdxdy (15.3.3)

2Thus, In the case of the torus T
2, the fundamental group is abelian. Hence

the systole can be expressed in this case as follows: sys1(T
2) = λ1

(
H1 (T

2;Z), ‖ ‖
)
,

where ‖ ‖ is the stable norm.
3shonut
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is the mean4 of f . More concretely, if (T2, g0) = R2/L where L is a
lattice of unit coarea, and D is a fundamental domain for the action
of L on R2 by translations, then the integral (15.3.3) can be written as

m =

∫

D

f(x, y)dxdy

where dxdy is the standard Lebesgue measure of R2.

15.4. Computational formula for the variance

The proof of inequalities with isosystolic defect relies upon the fa-
miliar computational formula for the variance5 of a random variable6

X in terms of expected values.
Namely, we have the formula

Eµ(X
2)− (Eµ(X))2 = Var(X), (15.4.1)

where µ is a probability measure. Here the variance is

Var(X) = Eµ
(
(X −m)2

)
,

where m = Eµ(X) is the expected value (i.e. the mean) (tochelet).

15.5. An application of the computational formula

Keeping our differential geometric application in mind, we will de-
note the random variable (mishtaneh akra’i) f .

Now consider a flat metric g0 of unit area on the 2-torus T2. Denote
the associated measure by µ. In other words, µ is given by the usual
Lebesgue measure dxdy. Since µ is a probability measure, we can apply
formula (15.4.1) to it. Consider a metric g = f 2g0 conformal to the flat
one, with conformal factor f > 0. Then we have

Eµ(f
2) =

∫

T
2

f 2dxdy = area(g),

since f 2dx dy is precisely the area element of the metric g.
Equation (15.4.1) therefore becomes

area(g)− (Eµ(f))
2 = Var(f). (15.5.1)

Next, we will relate the expected value Eµ(f) to the systole of
the metric g. Then we will then relate (15.4.1) to Loewner’s torus
inequality.

4tochelet (with “het”)
5shonut
6mishtaneh mikri
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By the uniformisation theorem, every metric on the torus T
2 is

conformally equivalent to a flat metric of unit area. Denoting such a
flat metric by g0, such equivalence can be written as

g = f 2g0.

15.6. Conformal invariant σ

Let us prove Loewner’s torus inequality for the metric g = f 2g0
on T

2, using the computational formula for the variance. We first
analyze the expected value term

Eµ(f) =

∫

T
2

fdxdy

in (15.5.1).
By the proof of Lemma 6.3.1, the lattice of deck transformations

of the flat torus g0 admits a Z-basis similar (domeh) to {τ, 1} ⊂ C,
where τ belongs to the standard fundamental domain (6.2.1). In other
words, the lattice is similar to

Zτ + Z1 ⊂ C.

Definition 15.6.1. We define the conformal invariant σ as follows:
consider the imaginary part Im(τ) and set

σ2 := Im(τ) > 0.

Lemma 15.6.2. We have σ2 ≥
√
3
2
, with equality if and only if τ is

the primitive cube or sixth root of unity.

Proof. This is immediate from the geometry of the fundamental
domain. �

15.7. Fundamental domain and Loewner’s torus inequality

Thinking of a unit area flat metric g0 as a lattice quotient R2/L, we
can write down the flat metric as dx2+dy2. We think of the conformal
factor f(x, y) > 0 of the metric g on T

2 as a doubly periodic (i.e., L-
periodic) function on R2.

Theorem 15.7.1. Let σ be the conformal invariant as above. Then
the metric f 2(dx2 + dy2) satisfies

area(g)− σ2sys(g)2 ≥ Var(f). (15.7.1)

Proof. Since g0 is assumed to be of unit area, the basis for its
group of deck tranformations can therefore be taken to be the pair{

τ

σ
,
1

σ

}
.
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Here Im
(
τ
σ

)
= σ. Thus the torus C/ Span

(
τ
σ
, 1
σ

)
has unit area:

area
(
C/ Span

(
τ
σ
, 1
σ

))
= 1.

With these normalisations, we see that the flat torus is ruled by a pencil
of horizontal closed geodesics, denoted

γy = γy(x),

each of length σ−1, where the “width” of the pencil equals σ, i.e. the
parameter y ranges through the interval [0, σ], with γσ = γ0. Note that
each of these closed geodesics is noncontractible in T

2, and therefore
by definition

length(γy) ≥ sys1(g).

By Fubini’s theorem, we pass to the iterated integral (nishneh) to ob-
tain the following lower bound for the expected value:

Eµ(f) =

∫ σ

0

(∫

γy

f(x)dx

)
dy

=

∫ σ

0

length(γy)dy

≥ σsys(g).

See also [Ka07, p. 41, 44]. Substituting into (15.5.1), we obtain the
required inequality

area(g)− σ2sys(g)2 ≥ Var(f). (15.7.2)

where f is the conformal factor of the metric g with respect to the unit
area flat metric g0. �

Since we have in general σ2 ≥
√
3
2
, we obtain in particular Loewner’s

torus inequality with isosystolic defect,

area(g)−
√
3
2
sys(g)2 ≥ Var(f). (15.7.3)

cf. [Pu52].

15.8. Boundary case of equality

Corollary 15.8.1. A metric satisfying the boundary case of equal-
ity in Loewner’s torus inequality is necessarily flat and homothetic to
the quotient of R2 by the lattice of Eisenstein integers.

Proof. If a metric f 2(dx2 + dy2) satisfies the boundary case of

equality area(g) −
√
3
2
sys(g)2 = 0, then the variance of the conformal

factor f must vanish by (15.7.3). Hence f is a constant function. The
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proof is completed by applying Lemma 6.3.1 on the Hermite constant
in dimension 2. �

Now suppose τ is pure imaginary, i.e. the lattice L is a rectangular
lattice of coarea 1.

Corollary 15.8.2. If τ is pure imaginary, then the metric g =
f 2g0 satisfies the inequality

area(g)− sys(g)2 ≥ Var(f). (15.8.1)

Proof. If τ is pure imaginary then σ =
√

Im(τ) ≥ 1, and the
inequality follows from (15.7.1). �

In particular, every surface of revolution satisfies (15.8.1), since its
lattice is rectangular, cf. Corollary 14.2.1.



CHAPTER 16

Manifolds and global geometry

16.1. Global geometry of surfaces

Discussion of Local versus Global: The local behavior is by def-
inition the behavior in an open neighborhood of a point. The local
behavior of a smooth curve is well understood by the implicit function
theorem. Namely, a smooth curve in the plane or in 3-space can be
thought of as the graph of a smooth function. A curve in the plane is
locally the graph of a scalar function. A curve in 3-space is locally the
graph of a vector-valued function.

Example 16.1.1. The unit circle in the plane can be defined im-
plicitly by

x2 + y2 = 1,

or parametrically by

t 7→ (cos t, sin t).

Alternatively, it can be given locally as the graph of the function

f(x) =
√
1− x2.

Note that this presentation works only for points on the upper halfcir-
cle. For points on the lower halfcircle we use the function

−
√
1− x2.

Both of these representations fail at the points (1, 0) and (−1, 0).
To overcome this difficulty, we must work with y as the independent

variable, instead of x. Thus, we can parametrize a neighborhood of
(1,0) by using the function

x = g(y) =
√
1− y2.

Example 16.1.2. The helix given in parametric form by

(x, y, z) = (cos t, sin t, t).

It can also be defined as the graph of the vector-valued function f(z),
with values in the (x, y)-plane, where

(x(z), y(z)) = f(z) = (cos z, sin z).

137
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In this case the graph representation in fact works even globally.

Example 16.1.3. The unit sphere in 3-space can be represented
locally as the graph of the function of two variables

f(x, y) =
√
1− x2 − y2.

As above, concerning the local nature of the presentation necessitates
additional functions to represent neighborhoods of points not in the
open northern hemisphere (this example is discussed in more detail in
Section 16.3).

16.2. Definition of manifold

Motivated by the examples given in the previous section, we give a
general definition as follows.

A manifold is defined as a subset of Euclidean space which is lo-
cally a graph of a function, possibly vector-valued. This is the original
definition of Poincaré who invented the notion (see Arnold [1, p. 234]).

Definition 16.2.1. By a 2-dimensional closed Riemannian mani-
fold we mean a compact subset

Σ ⊂ R
n

such that in an open neighborhood of every point p ∈ Σ in Rn, the
compact subset Σ can be represented as the graph of a suitable smooth
vector-valued function of two variables.

Here the function has values in (n− 2)-dimensional vectors.
The usual parametrisation of the graph can then be used to calcu-

late the coefficients gij (see Definition 11.4.3) of the first fundamental
form, as, for example, in Theorem 16.13.2 and Example 7.6.1. The
collection of all such data is then denoted by the pair (Σ, g), where

g = (gij)

is referred to as “the metric”.

Remark 16.2.2. Differential geometers like the (Σ, g) notation, be-
cause it helps separate the topology Σ from the geometry g. Strictly
speaking, the notation is redundant, since the object g already incorpo-
rates all the information, including the topology. However, geometers
have found it useful to use g when one wants to emphasize the geome-
try, and Σ when one wants to emphasize the topology.

Note that, as far as the intrinsic geometry of a Riemannian mani-
fold is concerned, the imbedding in Rn referred to in Definition 16.2.1
is irrelevant to a certain extent, all the more so since certain basic
examples, such as flat tori, are difficult to imbed in a transparent way.
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16.3. Sphere as a manifold

The round 2-sphere S2 ⊂ R3 defined by the equation

x2 + y2 + z2 = 1

is a closed Riemannian manifold. Indeed, consider the function f(x, y)

defined in the unit disk x2 + y2 < 1 by setting f(x, y) =
√

1− x2 − y2.
Define a coordinate chart

x1(u
1, u2) = (u1, u2, f(u1, u2)).

Thus, each point of the open northern hemisphere admits a neighbor-
hood diffeomorphic to a ball (and hence to R2). To cover the southern
hemisphere, use the chart

x2(u
1, u2) = (u1, u2,−f(u1, u2)).

To cover the points on the equator, use in addition charts x3(u
1, u2) =

(u1, f(u1, u2), u2), x4(u
1, u2) = (u1,−f(u1, u2), u2), as well as the pair of

charts x5(u
1, u2) = (f(u1, u2), u1, u2), x6(u

1, u2) = (−f(u1, u2), u1, u2).

16.4. Dual bases

Tangent space, cotangent space, and the notation for bases in these
spaces were discussed in Section 13.2.

We will work with dual bases
(
∂
∂ui

)
for vectors, and (dui) for cov-

ectors (i.e. elements of the dual space), such that

dui
(

∂

∂uj

)
= δij, (16.4.1)

where δij is the Kronecker delta.
Recall that the metric coefficients are defined by setting

gij = 〈xi, xj〉,
where x is the parametrisation of the surface. We will only work with
metrics whose first fundamental form is diagonal. We can thus write
the first fundamental form as follows:

g = g11(u
1, u2)(du1)2 + g22(u

1, u2)(du2)2. (16.4.2)

Remark 16.4.1. Such data can be computed from a Euclidean
imbedding as usual, or it can be given apriori without an imbedding,
as we did in the case of the hyperlobic metric.

We will work with such data independently of any Euclidean imbed-
ding, as discussed in Section 11.3. For example, if the metric coefficients
form an identity matrix, we obtain

g =
(
du1
)2

+
(
du2
)2
, (16.4.3)
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where the interior superscript denotes an index, while exterior super-
script denotes the squaring operation.

16.5. Jacobian matrix

The Jacobian matrix of v = v(u) is the matrix

∂(v1, v2)

∂(u1, u2)
,

which is the matrix of partial derivatives. Denote by

Jacv(u) = det

(
∂(v1, v2)

∂(u1, u2)

)
.

It is shown in advanced calculus that for any function f(v) in a do-
main D, one has

∫

D

f(v)dv1dv2 =

∫

D

g(u)Jacv(u)du
1du2, (16.5.1)

where g(u) = f(v(u)).

Example 16.5.1. Let u1 = r, u2 = θ. Let v1 = x, v2 = y. We
have x = r cos θ and y = r sin θ. One easily shows that the Jacobian
is Jacv(u) = r. The area elements are related by

dv1dv2 = Jacv(u)du
1du2,

or

dxdy = rdrdθ.

A similar relation holds for integrals.

16.6. Area of a surface, independence of partition

Partition1 is what allows us to perform actual calculuations with
area, but the result is independent of partition (see below).

Based on the local definition of area discussed in an earlier chapter,
we will now deal with the corresponding global invariant.

Definition 16.6.1. The area element dA of the surface is the ele-
ment

dA :=
√
det(gij)du

1du2,

where det(gij) = g11g22 − g212 as usual.

1ritzuf or chaluka?
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Theorem 16.6.2. Define the area of (Σ, g) by means of the formula

area =

∫

Σ

dA =
∑

{U}

∫

U

√
det(gij)du

1du2, (16.6.1)

namely by choosing a partition {U} of Σ subordinate to a finite open
cover as in Definition 16.2.1, performing a separate integration in each
open set, and summing the resulting areas. Then the total area is in-
dependent of the partition and choice of coordinates.

Proof. Consider a change from a coordinate chart (ui) to another
coordinate chart, denoted (vα). In the overlap of the two domains, the
coordinates can be expressed in terms of each other, e.g. v = v(u), and
we have the 2 by 2 Jacobian matrix Jacv(u).

Denote by g̃αβ the metric coefficients with respect to the chart (vα).
Thus, in the case of a metric induced by a Euclidean imbedding defined
by x = x(u) = x(u1, u2), we obtain a new parametrisation

y(v) = x(u(v)).

Then we have

g̃αβ =

〈
∂y

∂vα
,
∂y

∂vβ

〉

=

〈
∂x

∂ui
∂ui

∂vα
,
∂x

∂uj
∂uj

∂vβ

〉

=
∂ui

∂vα
∂uj

∂vβ

〈
∂x

∂ui
,
∂x

∂uj

〉

= gij
∂ui

∂vα
∂uj

∂vβ
.

The right hand side is a product of three square matrices:

∂ui

∂vα
gij

∂uj

∂vβ
.

The matrices on the left and on the right are both Jacobian matrices.
Since determinant is multiplicative, we obtain

det(g̃αβ) = det(gij)det

(
∂(u1, u2)

∂(v1, v2)

)2

.
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Hence using equation (16.5.1), we can write the area element as

dA = det
1
2 (g̃αβ)dv

1dv2

= det
1
2 (g̃αβ) Jacv(u)du

1du2

= det
1
2 (gij) det

(
∂(u1, u2)

∂(v1, v2)

)
Jacv(u)du

1du2

= det
1
2 (gij) du

1du2

since inverse maps have reciprocal Jacobians by chain rule. Thus the
integrand is unchanged and the area element is well defined. �

16.7. Conformal equivalence

Definition 16.7.1. Two metrics, g = gijdu
iduj and h = hijdu

iduj,
on Σ are called conformally equivalent , or conformal for short, if there
exists a function f = f(u1, u2) > 0 such that

g = f 2h,

in other words,
gij = f 2hij ∀i, j. (16.7.1)

Definition 16.7.2. The function f above is called the conformal
factor (note that sometimes it is more convenient to refer, instead, to
the function λ = f 2 as the conformal factor).

Theorem 16.7.3. Note that the length of every vector at a given
point (u1, u2) is multiplied precisely by f(u1, u2).

Proof. More speficially, a vector v = vi ∂
∂ui

which is a unit vector
for the metric h, is “stretched” by a factor of f , i.e. its length with
respect to g equals f . Indeed, the new length of v is

√
g(v, v) = g

(
vi

∂

∂ui
, vj

∂

∂uj

) 1
2

=

(
g

(
∂

∂ui
,
∂

∂uj

)
vivj

) 1
2

=
√
gijvivj

=
√
f 2hijvivj

= f
√
hijvivj

= f,

proving the theorem. �
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Definition 16.7.4. An equivalence class of metrics on Σ conformal
to each other is called a conformal structure on Σ (mivneh conformi).

16.8. Geodesic equation

The material in this section has already been dealt with in an earlier
chapter.

Perhaps the simplest possible definition of a geodesic β on a surface
in 3-space is in terms of the orthogonality of its second derivative β ′′ to
the surface. The nonlinear second order ordinary differential equation
defining a geodesic is, of course, the “true” if complicated definition.
We will now prove the equivalence of the two definitions. Consider a
plane curve

R
s

−→
α

R
2

(u1,u2)

where α = (α1(s), α2(s)). Let x : R2 → R3 be a regular parametrisation
of a surface in 3-space. Then the composition

R
s
−→
α

R
2

(u1,u2)
−→
x

R
3

yields a curve

β = x ◦ α.
Definition 16.8.1. A curve β = x◦α is a geodesic on the surface x

if one of the following two equivalent conditions is satisfied:

(a) we have for each k = 1, 2,

(αk)
′′

+ Γkij(α
i)

′

(αj)
′

= 0 where
′

=
d

ds
, (16.8.1)

meaning that

(∀k) d2αk

ds2
+ Γkij

dαi

ds

dαj

ds
= 0;

(b) the vector β ′′ is perpendicular to the surface and one has

β ′′ = Lijα
i′αj

′
n. (16.8.2)

To prove the equivalence, we write β = x ◦ α, then β ′ = xiα
i′ by

chain rule. Furthermore,

β ′′ =
d

ds
(xi ◦ α)αi′ + xiα

i′′ = xijα
j ′αi

′
+ xkα

k′′.

Since xij = Γkijxk + Lijn holds, we have

β ′′ − Lijα
i′αj

′
n = xk

(
αk

′′
+ Γkijα

i′αj
′
)
.
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16.9. Closed geodesic

Definition 16.9.1. A closed geodesic in a Riemannian 2-manifold Σ
is defined equivalently as

(1) a periodic curve β : R → Σ satisfying the geodesic equa-

tion αk
′′
+ Γkijα

i′αj
′
= 0 in every chart x : R2 → Σ, where, as

usual, β = x◦α and α(s) = (α1(s), α2(s)) where s is arclength.
Namely, there exists a period T > 0 such that β(s+T ) = β(s)
for all s.

(2) A unit speed map from a circle R/LT → Σ satisfying the
geodesic equation at each point, where LT = TZ ⊂ R is the
rank one lattice generated by T > 0.

Definition 16.9.2. The length L(β) of a path β : [a, b] → Σ is
calculated using the formula

L(β) =

∫ b

a

‖β ′(t)‖dt,

where ‖v‖ =
√
gijvivj whenever v = vixi. The energy is defined

by E(β) =
∫ b
a
‖β ′(t)‖2dt.

A closed geodesic as in Definition 16.9.1, item 2 has length T .

Remark 16.9.3. The geodesic equation (16.8.1) is the Euler-Lagrange
equation of the first variation of arc length. Therefore when a path
minimizes arc length among all neighboring paths connecting two fixed
points, it must be a geodesic. A corresponding statement is valid for
closed loops, cf. proof of Theorem 16.10.1. See also Section 15.1. In
Sections 16.11 and 16.15 we will give a complete description of the
geodesics for the constant curvature sphere, as well as for flat tori.

16.10. Existence of closed geodesic

Theorem 16.10.1. Every free homotopy class of loops in a closed
manifold contains a closed geodesic.

Proof. We sketch a proof for the benefit of a curious reader, who
can also check that the construction is independent of the choices in-
volved. The relevant topological notions are defined in Section 16.18
and [Hat02]. A free homotopy class α of a manifold M corresponds
to a conjugacy class gα ⊂ π1(M). Pick an element g ∈ gα. Thus g acts
on the universal cover M̃ of M . Let fg : M → R be the displacement
function of g, i.e.

fg(x) = d(x̃, g.x̃).
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Let x0 ∈M be a minimum of fg. A first variation argument shows that
any length-minimizing path between x̃0 and g.x̃0 descends to a closed
geodesic in M representing α, cf. [Car92, Ch93, GaHL04]. �

16.11. Surfaces of constant curvature

By the uniformisation theorem 13.6.1, all surfaces fall into three
types, according to whether they are conformally equivalent to metrics
that are:

(1) flat (i.e. have zero Gaussian curvature K ≡ 0);
(2) spherical (K ≡ +1);
(3) hyperbolic (K ≡ −1).

For closed surfaces, the sign of the Gaussian curvature K is that of
its Euler characteristic, cf. formula (16.26.1).

Theorem 16.11.1 (Constant positive curvature). There are only
two compact surfaces, up to isometry, of constant Gaussian curva-
ture K = +1. They are the round sphere S2 of Example 16.3; and
the real projective plane, denoted RP

2.

16.12. Real projective plane

Intuitively, one thinks of the real projective plane as the quotient
surface obtained if one starts with the northern hemisphere of the 2-
sphere, and “glues” together pairs of opposite points of the equatorial
circle (the boundary of the hemisphere).

More formally, the real projective plane can be defined as follows.
Let

m : S2 → S2

denote the antipodal map of the sphere, i.e. the restriction of the map

v 7→ −v
in R3. Then m is an involution. In other words, if we consider the
action of the group Z2 = {e,m} on the sphere, each orbit of the Z2

action on S2 consists of a pair of antipodal points

{±p} ⊂ S2. (16.12.1)

Definition 16.12.1. On the set-theoretic level, the real projective
plane RP

2 is the set of orbits of type (16.12.1), i.e. the quotient of S2

by the Z2 action.

Denote by Q : S2 → RP
2 the quotient map. The smooth structure

and metric on RP
2 are induced from S2 in the following sense. Let x :
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R2 → S2 be a chart on S2 not containing any pair of antipodal points.
Let gij be the metric coefficients with respect to this chart.

Let y = m◦x = −x denote the “opposite” chart, and denote by hij
its metric coefficients. Then

hij = 〈
∂y

∂ui
,
∂y

∂uj
〉 = 〈− ∂x

∂ui
,− ∂x

∂uj
〉 = 〈 ∂x

∂ui
,
∂x

∂uj
〉 = gij. (16.12.2)

Thus the opposite chart defines the identical metric coefficients. The
composition Q ◦ x is a chart on RP

2, and the same functions gij form
the metric coefficients for RP2 relative to this chart.

We can summarize the preceeding discussion by means of the fol-
lowing definition.

Definition 16.12.2. The real projective plane RP
2 is defined in

the following two equivalent ways:

(1) the quotient of the round sphere S2 by (the restriction to S2

of) the antipodal map v 7→ −v in R
3. In other words, a typical

point of RP2 can be thought of as a pair of opposite points of
the round sphere.

(2) the northern hemisphere of S2, with opposite points of the
equator identified.

The smooth structure of RP2 is induced from the round sphere.
Since the antipodal map preserves the metric coefficients by the cal-
culation (16.12.2), the metric structure of constant Gaussian curva-
ture K = +1 descends to RP

2, as well.

16.13. Simple loops for surfaces of positive curvature

Definition 16.13.1. A loop α : S1 → X of a space X is called
simple if the map α is one-to-one, cf. Definition 16.18.1.

Theorem 16.13.2. The basic properties of the geodesics on surfaces
of constant positive curvature as as follows:

(1) all geodesics are closed;
(2) the simple closed geodesics on S2 have length 2π and are de-

fined by the great circles;
(3) the simple closed geodesics on RP

2 have length π;
(4) the simple closed geodesics of RP2 are parametrized by half-

great circles on the sphere.

Proof. We calculate the length of the equator of S2. Here the
sphere ρ = 1 is parametrized by

x(θ, ϕ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)
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in spherical coordinates (θ, ϕ). The equator is the curve x◦α where α(s) =
(s, π

2
) with s ∈ [0, 2π]. Thus α1(s) = θ(s) = s. Recall that the metric

coefficients are given by g11(θ, ϕ) = sin2 ϕ, while g22 = 1 and g12 = 0.
Thus

‖β ′(s)‖ =
√
gij
(
s, π

2

)
αi′αj ′ =

√(
sin π

2

) (
dθ
ds

)2
= 1.

Thus the length of β is
∫ 2π

0

‖β ′(s)‖ds =
∫ 2π

0

1ds = 2π.

A geodesic on RP
2 is twice as short as on S2, since the antipodal points

are identified, and therefore the geodesic “closes up” sooner than (i.e.
twice as fast as) on the sphere. For example, a longitude of S2 is
not a closed curve, but it descends to a closed curve on RP

2, since
its endpoints (north and south poles) are antipodal, and are therefore
identified with each other. �

16.14. Successive minima

The material in this section has already been dealt with in an earlier
chapter.

Let B be a finite-dimensional Banach space, i.e. a vector space to-
gether with a norm ‖ ‖. Let L ⊂ (B, ‖ ‖) be a lattice of maximal rank,
i.e. satisfying rank(L) = dim(B). We define the notion of successive
minima of L as follows, cf. [GruL87, p. 58].

Definition 16.14.1. For each k = 1, 2, . . . , rank(L), define the k-th
successive minimum λk of the lattice L by

λk(L, ‖ ‖) = inf

{
λ ∈ R

∣∣∣∣
∃ lin. indep. v1, . . . , vk ∈ L
with ‖vi‖ ≤ λ for all i

}
. (16.14.1)

Thus the first successive minimum, λ1(L, ‖ ‖) is the least length of
a nonzero vector in L.

16.15. Flat surfaces

A metric is called flat if its Gaussian curvature K vanishes at every
point.

Theorem 16.15.1. A closed surface of constant Gaussian curva-
ture K = 0 is topologically either a torus T2 or a Klein bottle.

Let us give a precise description in the former case.
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Example 16.15.2 (Flat tori). Every flat torus is isometric to a
quotient T2 = R2/L where L is a lattice, cf. [Lo71, Theorem 38.2].
In other words, a point of the torus is a coset of the additive ac-
tion of the lattice in R2. The smooth structure is inherited from R2.
Meanwhile, the additive action of the lattice is isometric. Indeed, we
have dist(p, q) = ‖q − p‖, while for any ` ∈ L, we have

dist(p+ `, q + `) = ‖q + `− (p+ `)‖ = ‖q − p‖ = dist(p, q).

Therefore the flat metric on R2 descends to T2.

Note that locally, all flat tori are indistinguishable from the flat
plane itself. However, their global geometry depends on the metric in-
variants of the lattice, e.g. its successive minima, cf. Definition 16.14.1.
Thus, we have the following.

Theorem 16.15.3. The least length of a nontrivial closed geodesic
on a flat torus T

2 = R
2/L equals the first successive minimum λ1(L).

Proof. The geodesics on the torus are the projections of straight
lines in R2. In order for a straight line to close up, it must pass through
a pair of points x and x+` where ` ∈ L. The length of the corresponding
closed geodesic on T

2 is precisely ‖`‖, where ‖ ‖ is the Euclidean norm.
By choosing a shortest element in the lattice, we obtain a shortest
closed geodesic on the corresponding torus. �

16.16. Hyperbolic surfaces

Most closed surfaces admit neither flat metrics nor metrics of pos-
itive curvature, but rather hyperbolic metrics. A hyperbolic surface is
a surface equipped with a metric of constant Gaussian curvature K =
−1. This case is far richer than the other two.

Example 16.16.1. The pseudosphere (so called because its Gauss-
ian curvature is constant, and equals −1) is the surface of revolution

(f(ϕ) cos θ, f(ϕ) sin θ, g(ϕ))

in R3 defined by the functions f(φ) = eφ and

g(φ) =

∫ φ

0

(
1− e2ψ

)1/2
dψ,

where φ ranges through the interval −∞ < φ ≤ 0. The usual formu-

las g11 = f 2 as well as g22 =
(
df
dφ

)2
+
(
dg
dφ

)2
yield in our case g11 = e2φ,
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while

g22 =
(
eφ
)
2 +

(√
1− e2φ

)2

= e2φ + 1− e2φ

= 1.

Thus (gij) =

(
e2φ 0
0 1

)
. The pseudosphere has constant Gaussian

curvature −1, but it is not a closed surface (as it is unbounded in R3).

16.17. Hyperbolic plane

The metric

gH2 =
1

y2
(dx2 + dy2) (16.17.1)

in the upperhalf plane

H2 = {(x, y) | y > 0}
is called the hyperbolic metric of the upper half plane.

Theorem 16.17.1. The metric (16.17.1) has constant Gaussian
curvature K = −1.

Proof. By Theorem 11.7.3, we have

K = −∆LB log f = ∆LB log y = y2
(
− 1

y2

)
= −1,

as required. �

In coordinates (u1, u2), we can write it, a bit awkwardly, as

gH2 =
1

(u2)2

((
du1
)2

+
(
du2
)2)

.

The Riemannian manifold (H2, gH2) is referred to as the Poincaré up-
perhalf plane. Its significance resides in the following theorem.

Theorem 16.17.2. Every closed hyperbolic surface Σ is isometric to
the quotient of the Poincaré upperhalf plane by the action of a suitable
group Γ:

Σ = H2/Γ.

Here the nonabelian group Γ is a discrete subgroup Γ ⊂ PSL(2,R),

where a matrix A =

(
a b
c d

)
acts on H2 = {z ∈ C|=(z) > 0} by

z 7→ az + b

cz + d
,
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called fractional linear transformations, of Mobius transformations. All
such transformations are isometries of the hyperbolic metric. The fol-
lowing theorem is proved, for example, in [Kato92].

Theorem 16.17.3. Every geodesic in the Poincaré upperhalf plane
is either a vertical ray, or a semicircle perpendicular to the x-axis.

The foundational significance of this model in the context of the
parallel postulate of Euclid has been discussed by numerous authors.

Example 16.17.4. The length of a vertical interval joining i to ci
can be calculated as follows. Recall that the conformal factor is f(x, y) =
1
y
. The length is therefore given by

∣∣∣∣
∫ c

1

1

y
dy

∣∣∣∣ = | log c|.

Here the substitution y = es gives an arclength parametrisation.

16.18. Loops, simply connected spaces

We would like to provide a self-contained explanation of the topo-
logical ingredient which is necessary so as to understand Loewner’s
torus inequality, i.e. essentially the notion of a noncontractible loop
and the fundamental group of a topological space X. See [Hat02,
Chapter 1] for a more detailed account.

Definition 16.18.1. A loop in X can be defined in one of two
equivalent ways:

(1) a continuous map β : [a, b] → X satisfying β(a) = β(b);
(2) a continuous map λ : S1 → X from the circle S1 to X.

Lemma 16.18.2. The two definitions of a loop are equivalent.

Proof. Consider the unique increasing linear function

f : [a, b] → [0, 2π]

which is one-to-one and onto. Thus, f(t) = 2π(t−a)
b−a . Given a map

λ(eis) : S1 → X,

we associate to it a map β(t) = λ
(
eif(t)

)
, and vice versa. �

Definition 16.18.3. A loop S1 → X is said to be contractible if
the map of the circle can be extended to a continuous map of the unit
disk D → X, where S1 = ∂D.

Definition 16.18.4. A space X is called simply connected if every
loop in X is contractible.
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Theorem 16.18.5. The sphere Sn ⊂ Rn+1 which is the solution set
of x20 + . . .+x2n = 1 is simply connected for n ≥ 2. The circle S1 is not
simply connected.

16.19. Orientation on loops and surfaces

Let S1 ⊂ C be the unit circle. The choice of an orientation on the
circle is an arrow pointing clockwise or counterclockwise. The standard
choice is to consider S1 as an oriented manifold with orientation chosen
counterclockwise.

If a surface is imbedded in 3-space, one can choose a continuous
unit normal vector n at every point. Then an orientation is defined by
the right hand rule with respect to n thought of as the thumb (agudal).

16.20. Cycles and boundaries

The singular homology groups with integer coefficients, Hk(M ;Z)
for k = 0, 1, . . . ofM are abelian groups which are homotopy invariants
of M . Developing the singular homology theory is time-consuming.
The case that we will be primarily interested in as far as these notes
are concerned, is that of the 1-dimensional homology group:

H1(M ;Z).

In this case, the homology groups can be characterized easily without
the general machinery of singular simplices.

Let S1 ⊂ C be the unit circle, which we think of as a 1-dimensional
manifold with an orientation given by the counterclockwise direction.

Definition 16.20.1. A 1-cycle α on a manifold M is an integer
linear combination

α =
∑

i

nifi

where ni ∈ Z is called the multiplicity (ribui), while each

fi : S
1 →M

is a loop given by a smooth map from the circle to M , and each loop
is endowed with the orientation coming from S1.

Definition 16.20.2. The space of 1-cycles on M is denoted

Z1(M ;Z).

Let (Σg, ∂Σg) be a surface with boundary ∂Σg, where the genus g
is irrelevant for the moment and is only added so as to avoid confusion
with the summation symbol

∑
.
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The boundary ∂Σg is a disjoint union of circles. Now assume the
surface Σg is oriented.

Proposition 16.20.3. The orientation of the surface induces an
orientation on each boundary circle.

Thus we obtain an orientation-preserving identification of each bound-
ary component with the standard unit circle S1 ⊂ C (with its counter-
clockwise orientation).

Given a map Σg → M , its restriction to the boundary therefore
produces a 1-cycle

∂Σg ∈ Z1(M ;Z).

Definition 16.20.4. The space

B1(M ;Z) ⊂ Z1(M ;Z)

of 1-boundaries in M is the space of all cycles
∑

i

nifi ∈ Z1(M ;Z)

such that there exists a map of an oriented surface Σg →M (for some g)
satisfying

∂Σg =
∑

i

nifi.

Example 16.20.5. Consider the cylinder

x2 + y2 = 1, 0 ≤ z ≤ 1

of unit height. The two boundary components correspond to the two
circles: the “bottom” circle Cbottom defined by z = 0, and the “top”
circle Ctop defined by and z = 1. Consider the orientation on the
cylinder defined by the outward pointing normal vector. It induces the
counterclockwise orientation on Cbottom, and a clockwise orientation
on Ctop.

Now let C0 and C1 be the same circles with the following choice of
orientation: we choose a standard counterclockwise parametrisation on
both circles, i.e., parametrize them by means of (cos θ, sin θ). Then the
boundary of the cylinder is the difference of the two circles: C0 − C1,
or C1 − C0, depending on the choice of orientation.

Example 16.20.6. Cutting up a circle of genus 2 into two once-
holed tori shows that the separating curve is a 1-boundary.

Theorem 16.20.7. On a closed orientable surface, a separating
curve is a boundary, while a non-separating loop is never a boundary.
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16.21. First singular homology group

Definition 16.21.1. The 1-dimensional homology group ofM with
integer coefficients is the quotient group

H1(M ;Z) = Z1(M ;Z)/B1(M ;Z).

Definition 16.21.2. Given a cycle C ∈ Z1(M ;Z), its homology
class will be denoted [C] ∈ H1(M ;Z).

Example 16.21.3. A non-separating loop on a closed surface rep-
resents a non-trivial homology class of the surface.

Theorem 16.21.4. The 1-dimensional homology group H1(M ;Z)
is the abelianisation of the fundamental group π1(M):

H1(M ;Z) = (π1M)ab .

Note that a significant difference between the fundamental group
and the first homology group is the following. While only based loops
participate in the definition of the fundamental group, the definition
of H1(M ;Z) involves free (not based) loops.

Example 16.21.5. The fundamental groups of the real projective
plane RP2 and the 2-torus T2 are already abelian. Therefore one ob-
tains

H1(RP
2;Z) = Z/2Z,

and
H1(T

2;Z) = Z
2.

Example 16.21.6. The fundamental group of an orientable closed
surface Σg of genus g is known to be a group on 2g generators with a
single relation which is a product of g commutators. Therefore one has

H1(Σg;Z) = Z
2g.

16.22. Stable norm in 1-dimensional homology

Assume the manifoldM has a Riemannian metric. Given a smooth
loop f : S1 → M , we can measure its volume (length) with respect to
the metric of M . We will denote this length by

vol(f)

with a view to higher-dimensional generalisation.

Definition 16.22.1. The volume (length) of a 1-cycle C =
∑

i nifi
is defined as

vol(C) =
∑

i

|ni| vol(fi).
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Definition 16.22.2. Let α ∈ H1(M ;Z) be a 1-dimensional homol-
ogy class. We define the volume of α as the infimum of volumes of
representative 1-cycles:

vol(α) = inf {vol(C) | C ∈ α} ,
where the infimum is over all cycles C =

∑
i nifi representing the

class α ∈ H1(M ;Z).

The following phenomenon occurs for orientable surfaces.

Theorem 16.22.3. LetM be an orientable surface, i.e. 2-dimensional
manifold. Let α ∈ H1(M ;Z). For all j ∈ N, we have

vol(jα) = j vol(α), (16.22.1)

where jα denotes the class α+ α + . . .+ α, with j summands.

Proof. To fix ideas, let j = 2. By Lemma 16.22.4 below, a mini-
mizing loop C representing a multiple class 2α will necessarily intersect
itself in a suitable point p. Then the 1-cycle represented by C can be
decomposed into the sum of two 1-cycles (where each can be thought
of as a loop based at p). The shorter of the two will then give a min-
imizing loop in the class α which proves the identity (16.22.1) in this
case. The general case follows similarly. �

Lemma 16.22.4. A loop going around a cylinder twice necessarily
has a point of self-intersection.

Proof. We think of the loop as the graph of a 4π-periodic func-
tion f(t) (or alternatively a function on [0, 4π] with equal values at the
endpoints). Consider the difference g(t) = f(t) − f(t + 2π). Then g
takes both positive and negative values. By the intermediate function
theorem, the function g must have a zero t0. Then f(t0) = f(t0 + 2π)
hence t0 is a point of self-intersection of the loop. �

16.23. The degree of a map

An example of a degree d map is most easily produced in the case
of a circle. A self-map of a circle given by

eiθ 7→ eidθ

has degree d.
We will discuss the degree in the context of surfaces only.

Definition 16.23.1. The degree

df
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of a map f between closed surfaces is the algebraic number of points
in the inverse image of a generic point of the target surface.

We can use the 2-dimensional homology groups defined elsewhere
in these notes, so as to calculate the degree as follows. Recall that

H2(Σ;Z) = Z,

where the generator is represented by the identity self-map of the sur-
face.

Theorem 16.23.2. A map

f : Σ1 → Σ2

induces a homomorphism

f∗ : H2(Σ1;Z) → H2(Σ2;Z),

corresponding to multiplication by the degree df once the groups are
identified with Z:

Z → Z, n 7→ df n.

16.24. Degree of normal map of an imbedded surface

Theorem 16.24.1. Let Σ ⊂ R3 be an imbedded surface. Let p be
its genus. Consider the normal map

fn : Σ → S2

defined by sending each point x ∈ Σ to the normal vector n = nx at x.
Then the degree of the normal map is precisely 1− p.

Example 16.24.2. For the unit sphere, the normal map is the
identity map. The genus is 0, while the degree of the normal map
is 1− p = 1.

Example 16.24.3. For the torus, the normal map is harder to vi-
sualize. The genus is 1, while the degree of the normal map is 0.

Example 16.24.4. For a genus 2 surface imbedded in R3, the degree
of the normal map is 1 − 2 = −1. This means that if the surface is
oriented by the outward-pointing normal vector, the normal map is
orientation-reversing.



156 16. MANIFOLDS AND GLOBAL GEOMETRY

16.25. Euler characteristic of an orientable surface

The Euler characteristic χ(Σ) is even for closed orientable surfaces,
and the integer p = p(Σ) ≥ 0 defined by

χ(Σ) = 2− 2p

is called the genus of Σ.

Example 16.25.1. We have p(S2) = 0, while p(T2) = 1.

In general, the genus can be understood intuitively as the number of
“holes”, i.e. “handles”, in a familiar 3-dimensional picture of a pretzel.
We see from formula (16.26.1) that the only compact orientable surface
admitting flat metrics is the 2-torus. See [Ar83] for a friendly topo-
logical introduction to surfaces, and [Hat02] for a general definition of
the Euler characteristic.

16.26. Gauss-Bonnet theorem

Every imbedded closed surface in 3-space admits a continuous choice
of a unit normal vector n = nx at every point x. Note that no such
choice is possible for an imbedding of the Mobius band, see [Ar83] for
more details on orientability and imbeddings.

Closed imbedded surfaces in R3 are called orientable.

Remark 16.26.1. The integrals of type
∫

Σ

will be understood in the sense of Theorem 16.6.2, namely using an
implied partition subordinate to an atlas, and calculating the integral
using coordinates (u1, u2) in each chart, so that we can express the
metric in terms of metric coefficients

gij = gij(u
1, u2)

and similarly the Gaussian curvature

K = K(u1, u2).

Theorem 16.26.2 (Gauss-Bonnet theorem). Every closed surface Σ
satisfies the identity

∫

Σ

K(u1, u2)
√

det(gij)du
1du2 = 2πχ(Σ), (16.26.1)

where K is the Gaussian curvature function on Σ, whereas χ(Σ) is its
Euler characteristic.
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16.27. Change of metric exploiting Gaussian curvature

We will use the term pseudometric for a quadratic form (or the
associated bilinear form), possibly degenerate.

We would like to give an indication of a proof of the Gauss-Bonnet
theorem. We will have to avoid discussing some technical points. Con-
sider the normal map

F : Σ → S2, x 7→ nx.

Consider a neigborhood in Σ where the map F is a homeomorphism
(this is not always possible, and is one of the technical points we are
avoiding).

Definition 16.27.1. Let gΣ the metric of Σ, and h the standard
metric of S2.

Given a point x ∈ Σ in such a neighborhood, we can calculate the
curvature K(x). We can then consider a new metric in the conformal
class of the metric gΣ, defined as follows.

Definition 16.27.2. We define a new pseudometric, denoted ĝΣ,
on Σ by multiplying by the conformal factor K(x) at the point x.
Namely, ĝΣ is the pseudometric which at the point x is given by the
quadratic form

ĝx = K(x)gx.

If K ≥ 0 then the length of vectors is multiplied by
√
K.

The key to understanding the proof of the Gauss-Bonnet theorem
in the case of imbedded surfaces is the following theorem.

Theorem 16.27.3. Consider the restriction of the normal map F
to a neighborhood as above. We modify the metric on the source Σ by
the conformal factor given by the Gaussian curvature, as above. Then
the map

F : (Σ, ĝΣ) → (S2, h)

preserves areas: the area of the neighborhood in Σ (with respect to the
modified metric) equals to the “area” of its image on the sphere.

16.28. Gauss map

Definition 16.28.1. The Gauss map is the map

F :M → S2, p 7→ Np

defined by sending a point p of M the unit normal vector N = Np

thought of as a point of S2.
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The map F sends an infinitesimal parallelogram on the surface, to
an infinitesimal parallelogram on the sphere.

We may identify the tangent space to M at p and the tangent
space to S2 at F (p) ∈ S2. Then the differential of the map F is the
Weingarten map

W : TpM → TF (p)S
2.

The element of area KdA of the surface is mapped to the element of
area of the sphere. In other words, we modify the element of area
by multiplying by the determinant (Jacobian) of the Weingarten map,
namely the Gaussian curvature K(p). Hence the image of the area
element KdA is precisely area 2-form h on the sphere, as discussed in
the previous section.

It remains to be checked that the map has topological degree given
by half the Euler characteristic of the surface M , proving the theorem
in the case of imbedded surfaces. Since degree is invariant under contin-
uous deformations, the result can be checked for a particular standard
imbedding of a surface of arbitrary genus in R3.

16.29. An identity

Another way of writing identity (16.22.1) is as follows:

vol(α) =
1

j
vol(jα).

This phenomenon is no longer true for higher-dimensional mani-
folds. Namely, the volume of a homology class is no longer multiplica-
tive. However, the limit as j → ∞ exists and is called the stable norm.

Definition 16.29.1. Let M be a compact manifold of arbitrary
dimension. The stable norm ‖ ‖ of a class α ∈ H1(M ;Z) is the limit

‖α‖ = lim
j→∞

1

j
vol(jα). (16.29.1)

It is obvious from the definition that one has ‖α‖ ≤ vol(α). How-
ever, the inequality may be strict in general. As noted above, for
2-dimensional manifolds we have ‖α‖ = vol(α).

Proposition 16.29.2. The stable norm vanishes for a class of finite
order.

Proof. If α ∈ H1(M,Z) is a class of finite order, one has finitely
many possibilities for vol(jα) as j varies. The factor of 1

j
in (16.29.1)

shows that ‖α‖ = 0. �
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Similarly, if two classes differ by a class of finite order, their stable
norms coincide. Thus the stable norm passes to the quotient lattice
defined below.

Definition 16.29.3. The torsion subgroup of H1(M ;Z) will be
denoted T1(M) ⊂ H1(M ;Z). The quotient lattice L1(M) is the lattice

L1(M) = H1(M ;Z)/T1(M).

Proposition 16.29.4. The lattice L1(M) is isomorphic to Zb1(M),
where b1 is called the first Betti number of M .

Proof. This is a general result in the theory of finitely generated
abelian groups. �

16.30. Stable systole

Definition 16.30.1. Let M be a manifold endowed with a Rie-
mannian metric, and consider the associated stable norm ‖ ‖. The
stable 1-systole of M , denoted stsys1(M), is the least norm of a 1-
homology class of infinite order:

stsys1(M) = inf
{
‖α‖ | α ∈ H1 (M,Z) \ T1(M)

}

= λ1
(
L1(M), ‖ ‖

)
.

Example 16.30.2. For an arbitrary metric on the 2-torus T2, the
1-systole and the stable 1-systole coincide by Theorem 16.22.3:

sys1(T
2) = stsys1(T

2),

for every metric on T
2.

16.31. Free loops, based loops, and fundamental group

One can refine the notion of simple connectivity by introducing a
group, denoted

π1(X) = π1(X, x0),

and called the fundamental group of X relative to a fixed “base”
point x0 ∈ X.

Definition 16.31.1. A based loop is a loop α : [0, 1] → X satisfying
the condition α(0) = α(1) = x0.

In terms of the second item of Definition 16.18.1, we choose a fixed
point s0 ∈ S1. For example, we can choose s0 = ei0 = 1 for the
usual unit circle S1 ⊂ C, and require that α(s0) = x0. Then the
group π1(X) is the quotient of the space of all based loops modulo
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the equivalence equivalence relation defined by homotopies fixing the
basepoint, cf. Definition 16.31.2.

The equivalence class of the identity element is precisely the set
of contractible loops based at x0. The equivalence relation can be
described as follows for a pair of loops in terms of the second item of
Definition 16.18.1.

Definition 16.31.2. Two based loops α, β : S1 → X are equiva-
lent, or homotopic, if there is a continuous map of the cylinder S1 ×
[c, d] → X whose restriction to S1×{c} is α, whose restriction to S1×
{d} is β, while the map is constant on the segment {s0} × [c, d] of the
cylinder, i.e. the basepoint does not move during the homotopy.

Definition 16.31.3. An equivalence class of based loops is called
a based homotopy class. Removing the basepoint restriction (as well as
the constancy condition of Definition 16.31.2), we obtain a larger class
called a free homotopy class (of loops).

Definition 16.31.4. Composition of two loops is defined most con-
veniently in terms of item 1 of Definition 16.18.1, by concatenating their
domains.

In more detail, the product of a pair of loops, α : [−1, 0] → X
and β : [0,+1] → X, is a loop α.β : [−1, 1] → X, which coincides
with α and β in their domains of definition. The product loop α.β
is continuous since α(0) = β(0) = x0. Then Theorem 16.18.5 can be
refined as follows.

16.32. Fundamental groups of surfaces

Theorem 16.32.1. We have π1(S
1) = Z, while π1(S

n) is the trivial
group for all n ≥ 2.

Definition 16.32.2. The 2-torus T2 is defined to be the following
Cartesian product: T2 = S1 × S1, and can thus be realized as a subset

T
2 = S1 × S1 ⊂ R

2 × R
2 = R

4.

We have π1(T
2) = Z2. The familiar doughnut picture realizes T2 as

a subset in Euclidean space R3.

Definition 16.32.3. A 2-dimensional closed Riemannian manifold
(i.e. surface) Σ is called orientable if it can be realized by a subset
of R3.

Theorem 16.32.4. The fundamental group of a surface of genus g
is isomorphic to a group on 2g generators a1, b1, . . . , ag, bg satisfying
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the unique relation
g∏

i=1

aibia
−1
i b−1

i = 1.

Note that this is not the only possible presentation of the group in
terms of a single relation.





CHAPTER 17

Pu’s inequality

17.1. Hopf fibration h

To prove Pu’s inequality, we will need to study the Hopf fibration
more closely.

The circle action in C2 restricts to the unit sphere S3 ⊂ C2, which
therefore admits a fixed point free circle action. Namely, the circle

S1 = {eiθ : θ ∈ R} ⊂ C

acts on a point (z1, z2) ∈ C2 by

eiθ.(z1, z2) = (eiθz1, e
iθz2). (17.1.1)

The quotient manifold (space of orbits) S3/S1 is the 2-sphere S2 (from
the projective viewpoint, the quotient space is the complex projective
line CP

1).

Definition 17.1.1. The quotient map

h : S3 → S2, (17.1.2)

called the Hopf fibration.

17.2. Tangent map

Proposition 17.2.1. Consider a smooth map f :M → N between
differentiable manifolds. Then f defines a natural map

df : TM → TN

called the tangent map.

Proof. We represent a tangent vector v ∈ TpM by a curve

c(t) : I →M,

such that c′(o) = v. The composite map σ = f ◦ c : I → N is a curve
in N . Then the vector σ′(0) is the image of v under df :

df(v) = σ′(0)

by chain rule, proving the proposition. �

163



164 17. PU’S INEQUALITY

17.3. Riemannian submersion

Definition 17.3.1. A projection (R2, g) → R to the u1-axis is
called a Riemannian submersion if the metric coefficients in the hori-
zontal direction are independent of u2, or more precisely,

g = h(u1)
(
du1
)2

+ k(u1, u2)
(
du2
)2
, (17.3.1)

for suitable functions h and k (note that the matrix of metric coeffi-
cients is diagonal but not necessarily scalar).

Replacing the coordinates by (x, y), we obtain a somewhat more
readable formula

g = h(x)dx2 + k(x, y)dy2.

Being a Riemannian submersion is, of course, a local property, and we
stated it for Euclidean space for convenience. We will use it mostly in
the context of maps between compact manifolds.

Example 17.3.2. The metric (16.17.1) of the Poincaré upperhalf
plane admits a Riemannian submersion to (the positive ray of) the y-
axis but not to the x-axis, as the conformal factor depends on y.

17.4. Riemannian submersions

Riemannian submersions in the 2-dimensional case were dealt with
in an Section 17.3.

Consider a fiber bundle map f :M → N between closed manifolds,
i.e., a smooth map whose df is onto. Let F ⊂ M be the fiber over
a point p ∈ N . The differential df : TM → TN vanishes on the
subspace TxF ⊂ TM at every point x ∈ F . More precisely, we have
the vertical space1

ker(dfx) = TxF.

Given a Riemannian metric on M , we can consider the orthogonal
complement of TxF in TxM , denoted

Hx ⊂ TxM.

Thus
TxM = TxF ⊕Hx

is an orthogonal decomposition.

Definition 17.4.1. A fiber bundle map f : M → N between
Riemannian manifolds is called a Riemannian submersion if at every
point x ∈ M , the restriction of df : Hx → Tf(x)N is an isometry.

1anchi
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Proposition 17.4.2. Let S3 be the 3-sphere of constant sectional
curvature +1, i.e., the unit sphere in R4. The Hopf fibration

h : S3 → S2

is a Riemannian submersion, for which the natural metric on the base S2

is a metric of constant Gaussian curvature +4.

The latter is explained by the fact that the maximal distance be-
tween a pair of S1 orbits is π

2
rather than π, in view of the fact that

a pair of antipodal points of S3 lies in a common orbit and therefore
descends to the same point of the quotient space.

A pair of points at maximal distance is defined by a pair v, w ∈ S3

such that w is orthogonal to Cv.

17.5. Hamilton quaternions

The quaternionic viewpoint will be applied in Section ?The algebra
of the Hamilton quaternions is the real 4-dimensional vector space with
real basis {1, i, j, k}, so that

H = R1 + Ri+ Rj + Rk

equipped with an associative (chok kibutz), non-commutative product
operation. This operation has the following properties:

(1) the center of H is R1;
(2) the operation satisfies the relations i2 = j2 = k2 = −1 and ij =

−ji = k, jk = −kj = i, ki = −ik = j.

Lemma 17.5.1. The algebra H is naturally isomorphic to the com-
plex vector space C2 via the identification R1 + Ri ' C.

Proof. The subspace Rj + Rk can be thought of as

Rj + Rij = (R1 + Ri)j,

and we therefore obtain a natural isomorphism

H = C1 + Cj,

showing that {1, j} is a complex basis for H. �

Theorem 17.5.2. Nonzero quaternions form a group under quater-
nionic multiplication.

Proof. Given q = a+bi+cj+dk ∈ H, let N(q) = a2+b2+c2+d2,
and q̄ = a − bi − cj − dk. Then qq̄ = N(q). Therefore we have a
multiplicative inverse

q−1 =
1

N(q)
q̄,

proving the theorem. �
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17.6. Complex structures on the algebra H



CHAPTER 18

Approach using energy-area identity

18.1. An integral-geometric identity

Let T2 be a torus with an arbitrary metric. Let T0 = R2/L be the
flat torus conformally equivalent to T2. Let `0 = `0(x) be a simple

closed geodesic of T0. Thus `0 is the projection of a line ˜̀
0 ⊂ R2.

Let ˜̀
y ⊂ R2 be the line parallel to ˜̀

0 at distance y > 0 from `0 (here

we must “choose sides”, e.g. by orienting ˜̀
0 and requiring ˜̀

y to lie to

the left of ˜̀0). Denote by `y ⊂ T0 the closed geodesic loop defined by

the image of ˜̀y. Let y0 > 0 be the smallest number such that `y0 = `0,

i.e. the lines ˜̀
y0 and ˜̀

0 both project to `0.
Note that the loops in the family {`y} ⊂ T2 are not necessarily

geodesics with respect to the metric of T2. On the other hand, the
family satisfies the following identity.

Lemma 18.1.1 (An elementary integral-geometric identity). The
metric on T2 satisfies the following identity:

area(T2) =

∫ y0

0

E(`y)dy, (18.1.1)

where E is the energy of a loop with respect to the metric of T2, see
Definition 16.9.2.

Proof. Denote by f 2 the conformal factor of T2 with respect to
the flat metric T0. Thus the metric on T2 can be written as

f 2(x, y)(dx2 + dy2).

By Fubini’s theorem applied to a rectangle with sides lengthT0
(`0)

and y0, combined with Theorem 16.7.3, we obtain

area(T2) =

∫

T0

f 2dxdy

=

∫ y0

0

(∫

`y

f 2(x, y)dx

)
dy

=

∫ y0

0

E(`y)dy,

167
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proving the lemma. �

Remark 18.1.2. The identity (18.1.1) can be thought of as the
simplest integral-geometric identity, cf. equation (18.4.3).

18.2. Two proofs of the Loewner inequality

We give a slightly modified version of M. Gromov’s proof [Gro96],
using conformal representation and the Cauchy-Schwarz inequality, of
the Loewner inequality (15.2.1) for the 2-torus, see also [CK03]. We
present the following slight generalisation: there exists a pair of closed
geodesics on (T2, g), of respective lengths λ1 and λ2, such that

λ1λ2 ≤ γ2 area(g), (18.2.1)

and whose homotopy classes form a generating set for π1(T
2) = Z×Z.

Proof. The proof relies on the conformal representation

φ : T0 → (T2, g),

where T0 is flat, cf. uniformisation theorem 13.6.1. Here the map φ
may be chosen in such a way that (T2, g) and T0 have the same area.
Let f be the conformal factor, so that

g = f 2
(
(du1)2 + (du2)2

)

as in formula (16.7.1), where (du1)2+(du2)2 (locally) is the flat metric.
Let `0 be any closed geodesic in T0. Let {`s} be the family of

geodesics parallel to `0. Parametrize the family {`s} by a circle S1 of
length σ, so that

σ`0 = area(T0).

Thus T0 → S1 is a Riemannian submersion, cf. Definition 17.3.1. Then

area(T2) =

∫

T0

f 2.

By Fubini’s theorem, we have area(T2) =
∫
S1 ds

∫
`s
f 2dt. Therefore by

the Cauchy-Schwarz inequality,

area(T2) ≥
∫

S1

ds

(∫
`s
fdt
)2

`0
=

1

`0

∫

S1

ds (lengthφ(`s))
2 .

Hence there is an s0 such that area(T2) ≥ σ
`0
lengthφ(`s0)

2, so that

lengthφ(`s0) ≤ `0.

This reduces the proof to the flat case. Given a lattice in C, we choose
a shortest lattice vector λ1, as well as a shortest one λ2 not proportional
to λ1. The inequality now follows from Lemma 6.3.1. In the boundary
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case of equality, one can exploit the equality in the Cauchy-Schwarz
inequality to prove that the conformal factor must be constant. �

Alternative proof. Let `0 be any simple closed geodesic in T0.
Since the desired inequality (18.2.1) is scale-invariant, we can assume
that the loop has unit length:

lengthT0
(`0) = 1,

and, moreover, that the corresponding covering transformation of the
universal cover C = T̃0 is translation by the element 1 ∈ C. We
complete 1 to a basis {τ, 1} for the lattice of covering transformations
of T0. Note that the rectangle defined by

{z = x + iy ∈ C | 0 < x < 1, 0 < y < Im(τ)]}
is a fundamental domain for T0, so that area(T0) = Im(τ). The maps

`y(x) = x + iy, x ∈ [0, 1]

parametrize the family of geodesics parallel to `0 on T0. Recall that
the metric of the torus T is f 2(dx2 + dy2).

Lemma 18.2.1. We have the following relation between the length
and energy of a loop:

length(`y)
2 ≤ E(`y).

Proof. By the Cauchy-Schwarz inequality,

∫ 1

0

f 2(x, y)dx ≥
(∫ 1

0

f(x, y)dx

)2

,

proving the lemma. �

Now by Lemma 18.1.1 and Lemma 18.2.1, we have

area(T2) ≥
∫ Im(τ)

0

(
length(`y)

)2
dy.

Hence there is a y0 such that

area(T2) ≥ Im(τ) length(`y0)
2,

so that length(`y0) ≤ 1. This reduces the proof to the flat case. Given
a lattice in C, we choose a shortest lattice vector λ1, as well as a
shortest one λ2 not proportional to λ1. The inequality now follows
from Lemma 6.3.1. �
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Remark 18.2.2. Define a conformal invariant called the capacity
of an annulus as follows. Consider a right circular cylinder

ζκ = R/Z× [0, κ]

based on a unit circle R/Z. Its capacity C(ζκ) is defined to be its
height, C(ζκ) = κ. Recall that every annular region in the plane is con-
formally equivalent to such a cylinder, and therefore we have defined a
conformal invariant of an arbitrary annular region. Every annular re-
gion R satisfies the inequality area(R) ≥ C(R) sys1(R)

2. Meanwhile, if
we cut a flat torus along a shortest loop, we obtain an annular region R

with capacity at least C(R) ≥ γ−1
2 =

√
3
2
. This provides an alternative

proof of the Loewner theorem. In fact, we have the following identity:

confsys1(g)
2C(g) = 1, (18.2.2)

where confsys is the conformally invariant generalisation of the homol-
ogy systole, while C(g) is the largest capacity of a cylinder obtained
by cutting open the underlying conformal structure on the torus.

Question 18.2.3. Is the Loewner inequality (15.2.1) satisfied by
every orientable nonsimply connected compact surface? Inspite of its
elementary nature, and considerable research devoted to the area, the
question is still open. Recently the case of genus 2 was settled as well
as genus g ≥ 20

18.3. Hopf fibration and the Hamilton quaternions

The circle action in C2 restricts to the unit sphere S3 ⊂ C2, which
therefore admits a fixed point free circle action. Namely, the circle S1 =
{eiθ : θ ∈ R} ⊂ C acts on (z1, z2) by

eiθ.(z1, z2) = (eiθz1, e
iθz2).

It is possible to show that the quotient manifold (space of orbits) S3/S1

is the 2-sphere S2 (from the projective viewpoint, the quotient is the
complex projective line CP

1). Moreover, the quotient map

S3 → S2, (18.3.1)

called the Hopf fibration, is a Riemannian submersion, for which the
natural metric on the base is a metric of constant Gaussian curva-
ture +4 rather than +1. The latter is explained by the fact that the
maximal distance between a pair of S1 orbits is π

2
rather than π, in

view of the fact that a pair of antipodal points of S3 lies in a common
orbit.

Furthermore, the sphere S3 can be thought of as the Lie group
formed of the unit (Hamilton) quaternions inH = C2. The Lie group SO(3)
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can be identified with S3/{±1}. Therefore the fibration (18.3.1) de-
scends to a fibration

SO(3) → S2, (18.3.2)

exploited in the next section.

Remark 18.3.1. The group G = SO(3) can be identified with the
unit tangent bundle of S2, as follows. Choose a fixed unit tangent
vector v to S2, and send an element g ∈ G, acting on S2, to the image
of v under dg : TS2 → TS2.

Remark 18.3.2. Let us elaborate a bit further on the quaternionic
viewpoint, with an eye to aplying it in Section 18.4. A choice of a purely
imaginary Hamilton quaternion in H = R1+Ri+Rj+Rk, i.e. a linear
combination of i, j, and k, specifies a complex structure on H. Such a
complex structure leads to a fibration of the unit sphere, as in (18.3.1).
Choosing a pair of purely imaginary quaternions which are orthogonal,
results in a pair of circle fibrations of S3 such that a fiber of one fibration
is perpendicular to a fiber of the other fibration whenever two such
fibers meet. The construction of two “perpendicular” fibrations also
descends to the quotient by the natural Z2 action on S3.

18.4. Double fibration of SO(3) and integral geometry on S2

In this section, we present a self-contained account of an integral-
geometric identity, used in the proof of Pu’s inequality (15.1.6) in Sec-
tion 18.5, as well as in our argument in Lemma The identity has its
origin in results of P. Funk [Fu16] determining a symmetric function
on the two-sphere from its great circle integrals; see [Hel99, Proposi-
tion 2.2, p. 59], as well as Preface therein.

The sphere S2 is the homogeneous space of the Lie group SO(3),
cf. (18.3.2), so that S2 = SO(3)/SO(2), cf. [Ar83, p. 82]. Denote
by SO(2)σ the fiber over (stabilizer of) a typical point σ ∈ S2. The
projection

p : SO(3) → S2 (18.4.1)

is a Riemannian submersion for the standard metric of constant sec-
tional curvature 1

4
on SO(3). The total space SO(3) admits another

Riemannian submersion, which we denote

q : SO(3) → R̃P
2, (18.4.2)

whose typical fiber ν is an orbit of the geodesic flow on SO(3) when the
latter is viewed as the unit tangent bundle of S2, cf. Remark 18.3.1.

Here R̃P
2 denotes the double cover of RP2, homeomorphic to the 2-

sphere, cf. Definition 16.12.2. A fiber of fibration q is the collection of
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// (S2, dσ)

Figure 18.4.1. Integral geometry on S2, cf. (18.4.1) and (18.4.2)

unit vectors tangent to a given directed closed geodesic (great circle)
on S2. Thus, each orbit ν projects under p to a great circle on the

sphere. We think of the base space R̃P
2 of q as the configuration space

of oriented great circles on the sphere, with measure dν. While fibra-
tion q may seem more “mysterious” than fibration p, the two are actu-
ally equivalent from the quaternionic point of view, cf. Remark 18.3.2.

The diagram of Figure 18.4.1 illustrates the maps defined so far.
Denote by Eg(ν) the energy, and by Lg(ν) the length, of a curve ν

with respect to a (possibly singular) metric g = f 2g0.

Theorem 18.4.1. We have the following integral-geometric iden-
tity:

area(g) =
1

2π

∫

˜
RP

2

Eg(ν)dν.

Proof. We apply Fubini’s theorem [Ru87, p. 164] twice, to both q
and p, to obtain

∫

˜
RP

2

Eg(ν)dν =

∫

˜
RP

2

dν

(∫

ν

f 2 ◦ p ◦ ν(t)dt
)

=

∫

SO(3)

f 2 ◦ p

=

∫

S2

f 2 dσ

(∫

SO(2)σ

1

)

= 2π area(g),

(18.4.3)

completing the proof of the theorem. �

Proposition 18.4.2. Let f be a square integrable function on S2,
which is positive and continuous except possibly for a finite number of
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points where f either vanishes or has a singularity of type 1√
r
, Then

there is a great circle ν such that the following inequality is satisfied:
(∫

ν

f(ν(t))dt

)2

≤ π

∫

S2

f 2(σ)dσ, (18.4.4)

where t is the arclength parameter, and dσ is the Riemannian measure
of the metric g0 of the standard unit sphere. In other words, there is a
great circle of length L in the metric f 2g0, so that L2 ≤ πA, where A is
the Riemannian surface area of the metric f 2g0. In the boundary case
of equality in (18.4.4), the function f must be constant.

Proof. The proof is an averaging argument and shows that the
average length of great circles is short. Comparing length and energy
yields the inequality(∫

˜
RP

2 Lg(ν)
2
)

2π
≤
∫

˜
RP

2

Eg(ν)dν. (18.4.5)

The formula now follows from Theorem 18.4.1, since area(R̃P 2) = 4π.
In the boundary case of equality in (18.4.4), one must have equality

also in inequality (18.4.5) relating length and energy. It follows that the
conformal factor f must be constant along every great circle. Hence f
is constant everywhere on S2. �

18.5. Proof of Pu’s inequality

A metric g on RP
2 lifts to a centrally symmetric metric g̃ on S2.

Applying Proposition 18.4.2 to g̃, we obtain a great circle of g̃-length L
satisfying L2 ≤ πA, where A is the Riemannian surface area of g̃. Thus

we have
(
L
2

)2 ≤ π
2

(
A
2

)
, where sys1(g) ≤ L

2
while area(g) = A

2
, proving

inequality (15.1.6). See [Iv02] for an alternative proof.

18.6. A table of optimal systolic ratios of surfaces

Denote by SR(Σ) the supremum of the systolic ratios,

SR(Σ) = sup
g

sys1(g)
2

area(g)
,

ranging over all metrics g on a surface Σ. The known values of the
optimal systolic ratio are tabulated in Figure 18.6.1. It is interesting
to note that the optimal ratio for the Klein bottle RP2#RP

2 is achieved
by a singular metric, described in the references listed in the table.
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SR(Σ) numerical value where to find it

Σ = RP
2 =

π

2
[Pu52] ≈ 1.5707 Section 18.5

infinite π1(Σ) <
4

3
[Gro83] < 1.3333 . . . (15.1.7)

Σ = T2 = 2√
3
(Loewner) ≈ 1.1547 (15.2.1)

Σ = RP
2#RP

2 =
π

23/2
≈ 1.1107 [Bav86, Bav06,

Sak88]

Σ of genus 2 > 1
3

(√
2 + 1

)
> 0.8047 ?

Σ of genus 3 ≥ 8
7
√
3

> 0.6598 [Cal96]

Figure 18.6.1. Values for optimal systolic ratio SR of surface Σ



CHAPTER 19

A primer on surfaces

In this Chapter, we collect some classical facts on Riemann surfaces.
More specifically, we deal with hyperelliptic surfaces, real surfaces, and
Katok’s optimal bound for the entropy of a surface.

19.1. Hyperelliptic involution

Let Σ be an orientable closed Riemann surface which is not a sphere.
By a Riemann surface, we mean a surface equipped with a fixed confor-
mal structure, cf. Definition 16.7.4, while all maps are angle-preserving.

Furthermore, we will assume that the genus is at least 2.

Definition 19.1.1. A hyperelliptic involution of a Riemann sur-
face Σ of genus p is a holomorphic (conformal) map, J : Σ → Σ,
satisfying J2 = 1, with 2p + 2 fixed points.

Definition 19.1.2. A surface Σ admitting a hyperelliptic involu-
tion will be called a hyperelliptic surface.

Remark 19.1.3. The involution J can be identified with the non-
trivial element in the center of the (finite) automorphism group of Σ
(cf. [FK92, p. 108]) when it exists, and then such a J is unique,
cf. [Mi95, p.204] (recall that the genus is at least 2).

It is known that the quotient of Σ by the involution J produces a
conformal branched 2-fold covering

Q : Σ → S2 (19.1.1)

of the sphere S2.

Definition 19.1.4. The 2p + 2 fixed points of J are called Weier-
strass points. Their images in S2 under the ramified double cover Q of
formula (19.1.1) will be referred to as ramification points.

A notion of a Weierstrass point exists on any Riemann surface, but
will only be used in the present text in the hyperelliptic case.

Example 19.1.5. In the case p = 2, topologically the situation
can be described as follows. A simple way of representing the figure 8

175
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contour in the (x, y) plane is by the reducible curve

(((x− 1)2 + y2)− 1)(((x+ 1)2 + y2)− 1) = 0 (19.1.2)

(or, alternatively, by the lemniscate r2 = cos 2θ in polar coordinates,
i.e. the locus of the equation (x2 + y2)2 = x2 − y2).

Now think of the figure 8 curve of (19.1.2) as a subset of R3. The
boundary of its tubular neighborhood in R3 is a genus 2 surface. Rota-
tion by π around the x-axis has six fixed points on the surface, namely,
a pair of fixed points near each of the points −2, 0, and +2 on the x-
axis. The quotient by the rotation can be seen to be homeomorphic to
the sphere.

A similar example can be repackaged in a metrically more precise
way as follows.

Example 19.1.6. We start with a round metric on RP
2. Now

attach a small handle. The orientable double cover Σ of the resulting
surface can be thought of as the unit sphere in R3, with two little
handles attached at north and south poles, i.e. at the two points where
the sphere meets the z-axis. Then one can think of the hyperelliptic
involution J as the rotation of Σ by π around the z-axis. The six
fixed points are the six points of intersection of Σ with the z-axis.
Furthermore, there is an orientation reversing involution τ on Σ, given
by the restriction to Σ of the antipodal map in R3. The composition τ ◦
J is the reflection fixing the xy-plane, in view of the following matrix
identity:



−1 0 0
0 −1 0
0 0 −1





−1 0 0
0 −1 0
0 0 1


 =



1 0 0
0 1 0
0 0 −1


 . (19.1.3)

Meanwhile, the induced orientation reversing involution τ0 on S2 can
just as well be thought of as the reflection in the xy-plane. This is
because, at the level of the 2-sphere, it is “the same thing as” the
composition τ ◦ J . Thus the fixed circle of τ0 is precisely the equator,
cf. formula (19.3.3). Then one gets a quotient metric on S2 which is
roughly that of the western hemisphere, with the boundary longitude
folded in two, The metric has little bulges along the z-axis at north
and south poles, which are leftovers of the small handle.
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19.2. Hyperelliptic surfaces

For a treatment of hyperelliptic surfaces, see [Mi95, p. 60-61].
By [Mi95, Proposition 4.11, p. 92], the affine part of a hyperellip-
tic surface Σ is defined by a suitable equation of the form

w2 = f(z) (19.2.1)

in C2, where f is a polynomial. On such an affine part, the map J is
given by J(z, w) = (z,−w), while the hyperelliptic quotient map Q :
Σ → S2 is represented by the projection onto the z-coordinate in C2.

A slight technical problem here is that the map

Σ → CP
2, (19.2.2)

whose image is the compactification of the solution set of (19.2.1), is
not an imbedding. Indeed, there is only one point at infinity, given in
homogeneous coordinates by [0 : w : 0]. This point is a singularity.
A way of desingularizing it using an explicit change of coordinates at
infinity is presented in [Mi95, p. 60-61]. The resulting smooth surface
is unique [DaS98, Theorem, p. 100].

Remark 19.2.1. To explain what happens “geometrically”, note
that there are two points on our affine surface “above infinity”. This
means that for a large circle |z| = r, there are two circles above it satis-
fying equation (19.2.1) where f has even degree 2p+2 (for a Weierstrass
point we would only have one circle). To see this, consider z = reia. As
the argument a varies from 0 to 2π, the argument of f(z) will change
by (2p + 2)2π. Thus, if (reia, w(a)) represents a continuous curve on
our surface, then the argument of w changes by (2p+2)π, and hence we
end up where we started, and not at −w (as would be the case were the
polynomial of odd degree). Thus there are two circles on the surface
over the circle |z| = r. We conclude that to obtain a smooth compact
surface, we will need to add two points at infinity, cf. discussion around
[FK92, formula (7.4.1), p. 102].

Thus, the affine part of Σ, defined by equation (19.2.1), is a Rie-
mann surface with a pair of punctures p1 and p2. A neighborhood of
each pi is conformally equivalent to a punctured disk. By replacing
each punctured disk by a full one, we obtain the desired compact Rie-
mann surface Σ. The point at infinity [0 : w : 0] ∈ CP

2 is the image of
both pi under the map (19.2.2).

19.3. Ovalless surfaces

Denote by Σι the fixed point set of an involution ι of a Riemann
surface Σ. Let Σ be a hyperelliptic surface of even genus p. Let J : Σ →
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Σ be the hyperelliptic involution, cf. Definition 19.1.1. Let τ : Σ → Σ
be a fixed point free, antiholomorphic involution.

Lemma 19.3.1. The involution τ commutes with J and descends
to S2. The induced involution τ0 : S

2 → S2 is an inversion in a circle
C0 = Q(Στ◦J). The set of ramification points is invariant under the
action of τ0 on S2.

Proof. By the uniqueness of J , cf. Remark 19.1.3, we have the
commutation relation

τ ◦ J = J ◦τ, (19.3.1)

cf. relation (19.1.3). Therefore τ descends to an involution τ0 on the
sphere. There are two possibilities, namely, τ is conjugate, in the group
of fractional linear transformations, either to the map z 7→ z̄, or to the
map z 7→ −1

z̄
. In the latter case, τ is conjugate to the antipodal map

of S2.
In the case of even genus, there is an odd number of Weierstrass

points in a hemisphere. Hence the inverse image of a great circle is a
connected loop. Thus we get an action of Z2 × Z2 on a loop, resulting
in a contradiction.

In more detail, the set of the 2p + 2 ramification points on S2 is
centrally symmetric. Since there is an odd number, p + 1, of ramifi-
cation points in a hemisphere, a generic great circle A ⊂ S2 has the
property that its inverse image Q−1(A) ⊂ Σ is connected. Thus both
involutions τ and J , as well as τ ◦ J , act fixed point freely on the
loop Q−1(A) ⊂ Σ, which is impossible. Therefore τ0 must fix a point.
It follows that τ0 is an inversion in a circle. �

Suppose a hyperelliptic Riemann surface Σ admits an antiholomor-
phic involution τ . In the literature, the components of the fixed point
set Στ of τ are sometimes referred to as “ovals”. When τ is fixed point
free, we introduce the following terminology.

Definition 19.3.2. A hyperelliptic surface (Σ, J) of even positive
genus p > 0 is called ovalless real if one of the following equivalent
conditions is satisfied:

(1) Σ admits an imaginary reflection, i.e. a fixed point free, anti-
holomorphic involution τ ;

(2) the affine part of Σ is the locus in C2 of the equation

w2 = −P (z), (19.3.2)

where P is a monic polynomial, of degree 2p + 2, with real
coefficients, no real roots, and with distinct roots.
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Lemma 19.3.3. The two ovalless reality conditions of Definition 19.3.2
are equivalent.

Proof. A related result appears in [GroH81, p. 170, Proposi-
tion 6.1(2)]. To prove the implication (2) =⇒ (1), note that complex
conjugation leaves the equation invariant, and therefore it also leaves
invariant the locus of (19.3.2). A fixed point must be real, but P is pos-
itive hence (19.3.2) has no real solutions. There is no real solution at
infinity, either, as there are two points at infinity which are not Weier-
strass points, since P is of even degree, as discussed in Remark 19.2.1.
The desired imaginary reflection τ switches the two points at infinity,
and, on the affine part of the Riemann surface, coincides with complex
conjugation (z, w) 7→ (z̄, w̄) in C2.

To prove the implication (1) =⇒ (2), note that by Lemma 19.3.1,
the induced involution τ0 on S2 = Σ/ J may be thought of as complex
conjugation, by choosing the fixed circle of τ0 to be the circle

R ∪ {∞} ⊂ C ∪ {∞} = S2. (19.3.3)

Since the surface is hyperelliptic, it is the smooth completion of the
locus in C2 of some equation of the form (19.3.2), cf. (19.2.1). Here P
is of degree 2p+2 with distinct roots, but otherwise to be determined.
The set of roots of P is the set of (the z-coordinates of) the Weierstrass
points. Hence the set of roots must be invariant under τ0. Thus the
roots of the polynomial either come in conjugate pairs, or else are real.
Therefore P has real coefficients. Furthermore, the leading cofficient
of P may be absorbed into the w-coordinate by extracting a square
root. Here we may have to rotate w by i, but at any rate the coefficients
of P remain real, and thus P can be assumed monic.

If P had a real root, there would be a ramification point fixed by τ0.
But then the corresponding Weierstrass point must be fixed by τ , as
well! This contradicts the fixed point freeness of τ . Thus all roots of P
must come in conjugate pairs. �

19.4. Katok’s entropy inequality

Let (Σ, g) be a closed surface with a Riemannian metric. Denote

by (Σ̃, g̃) the universal Riemannian cover of (Σ, g). Choose a point x̃0 ∈
Σ̃.

Definition 19.4.1. The volume entropy (or asymptotic volume) h(M, g)
of a surface (Σ, g) is defined by setting

h(Σ, g) = lim
R→+∞

log (volg̃ B(x̃0, R))

R
, (19.4.1)
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where volg̃B(x̃0, R) is the volume (area) of the ball of radius R centered

at x̃0 ∈ Σ̃.

Since Σ is compact, the limit in (19.4.1) exists, and does not depend

on the point x̃0 ∈ Σ̃ [Ma79]. This asymptotic invariant describes the
exponential growth rate of the volume in the universal cover.

Definition 19.4.2. The minimal volume entropy, MinEnt, of Σ is
the infimum of the volume entropy of metrics of unit volume on Σ, or
equivalently

MinEnt(Σ) = inf
g
h(Σ, g) vol(Σ, g)

1
2 (19.4.2)

where g runs over the space of all metrics on Σ. For an n-dimensional
manifold in place of Σ, one defines MinEnt similarly, by replacing the
exponent of vol by 1

n
.

The classical result of A. Katok [Kato83] states that every metric g
on a closed surface Σ with negative Euler characteristic χ(Σ) satisfies
the optimal inequality

h(g)2 ≥ 2π|χ(Σ)|
area(g)

. (19.4.3)

Inequality (19.4.3) also holds for hom ent(g) [Kato83], as well as the
topological entropy, since the volume entropy bounds from below the
topological entropy (see [Ma79]). We recall the following well-known
fact, cf. [KatH95, Proposition 9.6.6, p. 374].

Lemma 19.4.3. Let (M, g) be a closed Riemannian manifold. Then,

h(M, g) = lim
T→+∞

log(P ′(T ))

T
(19.4.4)

where P ′(T ) is the number of homotopy classes of loops based at some
fixed point x0 which can be represented by loops of length at most T .

Proof. Let x0 ∈M and choose a lift x̃0 ∈ M̃ . The group

Γ := π1(M,x0)

acts on M̃ by isometries. The orbit of x̃0 under Γ is denoted Γ.x̃0.
Consider a fundamental domain ∆ for the action of Γ, containing x̃0.
Denote by D the diameter of ∆. The cardinal of Γ.x̃0 ∩ B(x̃0, R) is
bounded from above by the number of translated fundamental do-
mains γ.∆, where γ ∈ Γ, contained in B(x̃0, R+D). It is also bounded
from below by the number of translated fundamental domains γ.∆
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contained in B(x̃0, R). Therefore, we have

vol(B(x̃0, R))

vol(M, g)
≤ card (Γ.x̃0 ∩B(x̃0, R)) ≤

vol(B(x̃0, R +D))

vol(M, g)
.

(19.4.5)
Take the log of these terms and divide by R. The lower bound becomes

1

R
log

(
vol(B(R))

vol(g)

)
=

=
1

R
log (vol(B(R)))− 1

R
log (vol(g)) ,

(19.4.6)

and the upper bound becomes

1

R
log

(
vol(B(R +D))

vol(g)

)
=

=
R +D

R

1

R +D
log(vol(B(R +D)))− 1

R
log(vol(g)).

(19.4.7)

Hence both bounds tend to h(g) when R goes to infinity. Therefore,

h(g) = lim
R→+∞

1

R
log (card(Γ.x̃0 ∩B(x̃0, R))) . (19.4.8)

This yields the result since P ′(R) = card(Γ.x̃0 ∩ B(x̃0, R)). �
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tions. Birkhäuser Boston, Inc., Boston, MA, 1992.

[Ca71] Cassels, J. W. S.: An introduction to the geometry of numbers. Sec-
ond printing. Grundlehren der mathematischen Wissenschaften, 99.
Springer-Verlag, Berlin-Heidelberg-New York, 1971.

[2] Cauchy, A. L.: Leo̧ns sur les applications du calcul infinitésimal à la
géométrie. Paris: Imprimérie Royale, 1826.

[Ch93] Chavel, I.: Riemannian geometry—a modern introduction. Cambridge
Tracts in Mathematics, 108. Cambridge University Press, Cambridge,
1993.

[CoS94] Conway, J.; Sloane, N.: On lattices equivalent to their duals. J. Number
Theory 48 (1994), no. 3, 373–382.

[ConS99] Conway, J. H.; Sloane, N. J. A.: Sphere packings, lattices and groups.
Third edition. Springer, 1999.

[CoT03] Cornea, O.; Lupton, G.; Oprea, J.; Tanré, D.: Lusternik-Schnirelmann
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Leipzig: B.G. Teubner 1882.

[Ko87] Kodani, S.: On two-dimensional isosystolic inequalities, Kodai Math.
J. 10 (1987), no. 3, 314–327.

[Kon03] Kong, J.: Seshadri constants on Jacobian of curves. Trans. Amer. Math.
Soc. 355 (2003), no. 8, 3175–3180.

[Ku78] Kung, H. T.; Leiserson, C. E.: Systolic arrays (for VLSI). Sparse Matrix
Proceedings 1978 (Sympos. Sparse Matrix Comput., Knoxville, Tenn.,
1978), pp. 256–282, SIAM, Philadelphia, Pa., 1979.

[LaLS90] Lagarias, J.C.; Lenstra, H.W., Jr.; Schnorr, C.P.: Bounds for Korkin-
Zolotarev reduced bases and successive minima of a lattice and its recip-
rocal lattice. Combinatorica 10 (1990), 343–358.

[La75] Lawson, H.B. The stable homology of a flat torus. Math. Scand. 36

(1975), 49–73.
[Leib] Leibniz, G. W.: La naissance du calcul différentiel. (French) [The birth
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