1. Let

$$
\begin{array}{clc}
x+3 y+3 z & = & 1 \\
x+(a+4) y+\left(-a^{2}+4 a-1\right) z & = & 4 \\
-2 x-6 y+\left(a^{2}-4 a-2\right) z & = & a-4
\end{array}
$$

be a linear equations system. Determine for which values of a :
There is one solution
There is an infinite number of solutions
There is no solution
If there is a for which there are infinite solutions- choose such a and find the general form of the solutions.
2. For the following matrix A :

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
1 & 1 & -1 \\
-2 & 4 & -2
\end{array}\right)
$$

find a basis for $R(A)$
find a basis for $C(A)$
express $C(A)$ as a set of solutions of linear equation system.
detemine if A is invertible. If so, find A^{-1}.
3. For $A=\left(\begin{array}{lll}1 & 3 & -6 \\ 4 & 2 & -8 \\ 3 & 3 & -8\end{array}\right)$ find an invertible matrix P and a diagonal matrix D such that

$$
P^{-1} A P=D
$$

4. She'ela Meytiva:
(a) Compute the projection $\pi_{w}(v)$ for $v=\left(\begin{array}{c}1 \\ 2 \\ -1 \\ 3\end{array}\right), w=\left(\begin{array}{c}-2 \\ \frac{1}{2} \\ 2 \\ 3\end{array}\right)$.
(b) Compute the angle between $v=\left(\begin{array}{c}2 \\ 3 \\ -1 \\ 2\end{array}\right)$ and $w=\left(\begin{array}{c}-2 \\ -1 \\ 3 \\ 3\end{array}\right)$
(c) Let

$$
B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right)
$$

compute the inverse of B^{2}.

