קוד:גבול עליון ותחתון: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "תהי סדרה $\{x_n\}_{n=1}^\infty $ . נגדיר 2 סדרות חדשות: $L_n=\sup \{x_k : k\leq n\} , l_n = \inf \{x_k : k \leq n\} $ . ברור ש- $l_n\l...")
 
מ (3 גרסאות יובאו)
 
(2 גרסאות ביניים של משתמש אחר אחד אינן מוצגות)
שורה 1: שורה 1:
תהי סדרה $\{x_n\}_{n=1}^\infty $ . נגדיר 2 סדרות חדשות: $L_n=\sup \{x_k : k\leq n\} , l_n = \inf \{x_k : k \leq n\} $ . ברור ש- $l_n\leq L_n $.  
תהי סדרה $\{x_n\}_{n=1}^\infty $ . נגדיר 2 סדרות חדשות: $L_n=\sup \{x_k : k\geq n\} , l_n = \inf \{x_k : k \geq n\} $ . ברור ש- $l_n\leq L_n $.  


תזכורת: $ A\subseteq B\subseteq \mathbb{R} \Rightarrow \inf B\leq \inf A \leq \sup A \leq \sup B $
תזכורת: $ A\subseteq B\subseteq \mathbb{R} \Rightarrow \inf B\leq \inf A \leq \sup A \leq \sup B $


מהתזכורת הזאת נשים לב ש- $ L_n $ מונו' (מונוטונית) יורדת ו- $ L_n $ מונו' עולה. זאת משום ש- $ \{x_k : k\leq n\} \subseteq \{x_k : k\leq n+1 \} $ ולכן $ l_n\leq l_{n+1}\leq L_{n+1} \leq L_n $
מהתזכורת הזאת נשים לב ש- $ L_n $ מונו' (מונוטונית) יורדת ו- $ L_n $ מונו' עולה. זאת משום ש- $ \{x_k : k\geq n\} \subseteq \{x_k : k\geq n+1 \} $ ולכן $ l_n\leq l_{n+1}\leq L_{n+1} \leq L_n $


\underline{הגדרה:} הגבול העליון של $ x_n $, שמסומן באופן הבא: $ \overline{\lim_{n\to\infty}} $ מוגדר להיות $ \lim_{n\to \infty} L_n $ . באותו אופן, הגבול התחתון הוא ***שגיאה באנדרליין***!!!!!
\begin{definition}
הגבול העליון של $ x_n $, שמסומן באופן הבא: $ \overline{\lim}_{n\to\infty} x_n $ מוגדר להיות $ \lim_{n\to \infty} L_n $ . באותו אופן, הגבול התחתון הוא $\underline{\lim}_{n\to\infty} x_n =\lim_{n\to \infty} l_n $.
\end{definition}
 
\begin{thm}
תהי סדרה חסומה $x_n $ אזי
 
הגבול העליון והתחתון זהים אם ורק אם הסדרה $x_n $ מתכנסת (ואז תתכנס לגבול העליון/תחתון)
\end{thm}
 
\begin{proof}
\boxed{\Leftarrow}
נראה ש- $l_n\leq x_n \leq L_n $ אבל הקצוות מתכנסים לאותו מספר $L$ ולכן, ממשפט הסנדוויץ', $x_n\to L $
 
\boxed{\Rightarrow}
יהי $\varepsilon>0 $ . אנו יודעים ש- $\exists N \forall n>N : x_n\in (L-\varepsilon,L+\varepsilon) $ ואז לפי ההגדרה $\forall n>N : L-\varepsilon<x_n<L+\varepsilon $ . לכן גם
 
$$\forall n>N : L-\varepsilon\leq l_n\leq L_n \leq L+\varepsilon $$
 
ובעצם קיבלנו ש- $\exists N \forall n>N : |L_n -L|,|l_n -L|<\varepsilon $
\end{proof}

גרסה אחרונה מ־20:15, 4 באוקטובר 2014

תהי סדרה $\{x_n\}_{n=1}^\infty $ . נגדיר 2 סדרות חדשות: $L_n=\sup \{x_k : k\geq n\} , l_n = \inf \{x_k : k \geq n\} $ . ברור ש- $l_n\leq L_n $.

תזכורת: $ A\subseteq B\subseteq \mathbb{R} \Rightarrow \inf B\leq \inf A \leq \sup A \leq \sup B $

מהתזכורת הזאת נשים לב ש- $ L_n $ מונו' (מונוטונית) יורדת ו- $ L_n $ מונו' עולה. זאת משום ש- $ \{x_k : k\geq n\} \subseteq \{x_k : k\geq n+1 \} $ ולכן $ l_n\leq l_{n+1}\leq L_{n+1} \leq L_n $

\begin{definition} הגבול העליון של $ x_n $, שמסומן באופן הבא: $ \overline{\lim}_{n\to\infty} x_n $ מוגדר להיות $ \lim_{n\to \infty} L_n $ . באותו אופן, הגבול התחתון הוא $\underline{\lim}_{n\to\infty} x_n =\lim_{n\to \infty} l_n $. \end{definition}

\begin{thm} תהי סדרה חסומה $x_n $ אזי

הגבול העליון והתחתון זהים אם ורק אם הסדרה $x_n $ מתכנסת (ואז תתכנס לגבול העליון/תחתון) \end{thm}

\begin{proof} \boxed{\Leftarrow} נראה ש- $l_n\leq x_n \leq L_n $ אבל הקצוות מתכנסים לאותו מספר $L$ ולכן, ממשפט הסנדוויץ', $x_n\to L $

\boxed{\Rightarrow} יהי $\varepsilon>0 $ . אנו יודעים ש- $\exists N \forall n>N : x_n\in (L-\varepsilon,L+\varepsilon) $ ואז לפי ההגדרה $\forall n>N : L-\varepsilon<x_n<L+\varepsilon $ . לכן גם

$$\forall n>N : L-\varepsilon\leq l_n\leq L_n \leq L+\varepsilon $$

ובעצם קיבלנו ש- $\exists N \forall n>N : |L_n -L|,|l_n -L|<\varepsilon $ \end{proof}