מבנים אלגבריים למדעי המחשב - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "==ספר הקורס== ההרצאות מבוססות באופן כללי על הספר [http://abstract.ups.edu/aata/ Abstarct Algebra - Theory and Applications b...")
 
שורה 13: שורה 13:


===הרצאה 2===
===הרצאה 2===
חבורות; <math>\mathbb{Z},\mathbb{Z}_n,{GL}_n,{SL}_n,S_n</math>, קווטרניונים

גרסה מ־07:50, 27 באוקטובר 2017

ספר הקורס

ההרצאות מבוססות באופן כללי על הספר Abstarct Algebra - Theory and Applications by Thomas W. Judson

נושאי ההרצאות

הרצאה 1

הקדמה; הסבר על קידוד והצפנה, מבוא למבנים אלגבריים.

קידוד הוא שיטה להעברת מידע ובין היתר מטרתו היא להבטיח את נכונות המידע ולזהות (ולתקן) שגיאות.

הצפנה היא שיטה להסתרת מידע במקום בו כולם רואים את התוכן המועבר, ובנוסף דרך להבטיח מי הוא מקור המידע (חתימה).

המבנים האלגבריים שאנו עוסקים בהם בקורס הם חבורה, חוג ושדה.

הרצאה 2

חבורות; [math]\displaystyle{ \mathbb{Z},\mathbb{Z}_n,{GL}_n,{SL}_n,S_n }[/math], קווטרניונים