אנליזה מתקדמת למורים תרגול 2: הבדלים בין גרסאות בדף
שורה 45: | שורה 45: | ||
=====פתרון===== | =====פתרון===== | ||
נתחיל עם הצמוד. מה אנחנו רוצים שיתקיים? נעבור רגע להצגה | נתחיל עם הצמוד. מה אנחנו רוצים שיתקיים? נעבור רגע להצגה הקרטזית <math>z=r\cos \theta+r\sin \theta i</math>, ולכן <math>\overline{z}=r\cos \theta-r\sin \theta i</math>. הערך המוחלט לא משתנה, אנחנו רק צריכם למצוא זוית <math>\phi</math> שתקיים לנו: <math>\cos \phi=\cos \theta, sin \phi=-\sin \theta</math>. לצורך זה ניעזר בזהויות הבאות: <math>\sin(-\alpha)=-\sin \alpha,\cos(-\alpha)=\cos \alpha</math>\, ולכן הבחירה <math>\phi=-\theta</math> היא הבחירה המוצלחת! | ||
בדומה לזה נעשה עם <math>-z=-r\cos \theta-r\sin \theta i</math>. כאן אנחנו צריכים למצוא זוית <math>\ | בדומה לזה נעשה עם <math>-z=-r\cos \theta-r\sin \theta i</math>. כאן אנחנו צריכים למצוא זוית <math>\phi</math> שתקיים לנו: <math>\cos \phi=-\cos \theta, sin \phi=-\sin \theta</math>. לצורך זה ניעזר בזהויות הבאות: | ||
<math>\sin(180+\alpha)=-\sin \alpha,\cos(180+\alpha)=-\cos \alpha</math>\ (הן נובעות מהזהויות של זוית משלימה ל180 והזהויות הקודמות), ולכן הבחירה <math>\ | <math>\sin(180+\alpha)=-\sin \alpha,\cos(180+\alpha)=-\cos \alpha</math>\ (הן נובעות מהזהויות של זוית משלימה ל180 והזהויות הקודמות), ולכן הבחירה <math>\phi=180+\theta</math> היא הבחירה המוצלחת! | ||
בסה"כ: <math>\overline{z}=r\text{cis}-\theta,-z=r\text{cis}180+\theta</math>. | בסה"כ: <math>\overline{z}=r\text{cis}-\theta,-z=r\text{cis}180+\theta</math>. |
גרסה מ־10:50, 6 בנובמבר 2018
חזרה ל מערכי תרגול.
הצגה פולרית של מספרים מרוכבים
נתבונן במספר מרוכב [math]\displaystyle{ z=a+bi }[/math], נסמן ב[math]\displaystyle{ \theta }[/math] את הזוית עם הציר הממשי נגד השעון וב[math]\displaystyle{ r }[/math] את הנורמה, אז נקבל: [math]\displaystyle{ \cos \theta = \frac{a}{r},\sin \theta = \frac{b}{r}, \tan \theta = \frac{b}{a} }[/math]. ולכן נקבל [math]\displaystyle{ z=r\cdot \cos \theta +r\cdot \sin \theta i }[/math], שמסומן בקצרה: [math]\displaystyle{ r\text{cis} \theta }[/math].
מעבר בין הצגות
מקרטזית לפולרית: בהינתן [math]\displaystyle{ z=a+bi }[/math], ניקח [math]\displaystyle{ r=\sqrt{a^2+b^2},\theta \text{ such that} \tan \theta =\frac{b}{a} }[/math] עד כדי הוספת [math]\displaystyle{ \pi }[/math] לפי מיקום המספר על הצירים.
לדוגמא: עבור המספר [math]\displaystyle{ -0.5+\frac{\sqrt{3}}{2}i }[/math] נקבל [math]\displaystyle{ r=\sqrt{0.25+\frac{3}{4}}=1,\theta=60+180=240=\frac{\pi}{3}+\pi=\frac{4\pi}{3} }[/math].
מפולרית לקרטזית: אם [math]\displaystyle{ z=r\text{cis} \theta }[/math] אז [math]\displaystyle{ a=r\cos \theta,b=r\sin \theta }[/math].
תרגיל
חשבו:
1. [math]\displaystyle{ 5\text{cis}60\cdot 7\text{cis}45 }[/math].
2. [math]\displaystyle{ 2\text{cis}30+4\text{cis}135 }[/math].
פתרון
1. הנורמה מוכפלת והזויות מתחברות: [math]\displaystyle{ 35\text{cis}105 }[/math]
2. עוברים לקרטזית ושם מחברים: [math]\displaystyle{ (2\cdot \frac{\sqrt{3}}{2}+2\cdot \frac{1}{2}i)+(4\cdot -\frac{sqrt{2}}{2} +4\cdot \frac{\sqrt{2}}{2}i)=\sqrt{3}-2\sqrt{2}+(1+2\sqrt{2})i }[/math]
נוסחת דה-מואבר
מסקנה מכפל בהצגה פולרית נקבל: [math]\displaystyle{ (r\text{cis} \theta )^n=r^n\text{cis} (n\theta) }[/math].
לדוגמא: [math]\displaystyle{ (\sqrt{2}\text{cis}60)^3=2\sqrt{2}\text{cis}180=-2\sqrt{2} }[/math].
כך נוכל למצוא שורשים של מספרים מרוכבים. באופן כללי: אם [math]\displaystyle{ (r\text{cis}\theta)^n=p\text{cis}\phi }[/math] אז [math]\displaystyle{ r=\sqrt[n]{p}, n\cdot \theta=\phi + 2\pi k \Rightarrow \theta=\frac{\phi +2\pi k}{n}=\frac{\phi}{n}+\frac{2\pi k}{n} }[/math].
תרגיל
חשב את [math]\displaystyle{ \sqrt[3]{8\text{cis}\frac{\pi}{4}} }[/math]
פתרון
נקבל [math]\displaystyle{ r=2,\theta=\frac{\pi}{12}+\frac{2\pi k}{3}=\frac{\pi}{12}\lor \frac{9\pi}{12}\lor \frac{17\pi}{12} }[/math]. נשים לב שאם ניקח [math]\displaystyle{ k=3 }[/math] נקבל [math]\displaystyle{ \theta=\frac{25\pi}{12}=\frac{\pi}{12}+2\pi }[/math], ולכן זה בדיוק אותו מספר כמו עבור [math]\displaystyle{ k=0 }[/math].
תרגיל - הצמוד בראי ההצגה הפולרית
נניח ש- [math]\displaystyle{ z=r\text{cis}\theta }[/math]. מצאו את [math]\displaystyle{ -z,\overline{z} }[/math] כתלות ב-[math]\displaystyle{ r,\theta }[/math].
פתרון
נתחיל עם הצמוד. מה אנחנו רוצים שיתקיים? נעבור רגע להצגה הקרטזית [math]\displaystyle{ z=r\cos \theta+r\sin \theta i }[/math], ולכן [math]\displaystyle{ \overline{z}=r\cos \theta-r\sin \theta i }[/math]. הערך המוחלט לא משתנה, אנחנו רק צריכם למצוא זוית [math]\displaystyle{ \phi }[/math] שתקיים לנו: [math]\displaystyle{ \cos \phi=\cos \theta, sin \phi=-\sin \theta }[/math]. לצורך זה ניעזר בזהויות הבאות: [math]\displaystyle{ \sin(-\alpha)=-\sin \alpha,\cos(-\alpha)=\cos \alpha }[/math]\, ולכן הבחירה [math]\displaystyle{ \phi=-\theta }[/math] היא הבחירה המוצלחת!
בדומה לזה נעשה עם [math]\displaystyle{ -z=-r\cos \theta-r\sin \theta i }[/math]. כאן אנחנו צריכים למצוא זוית [math]\displaystyle{ \phi }[/math] שתקיים לנו: [math]\displaystyle{ \cos \phi=-\cos \theta, sin \phi=-\sin \theta }[/math]. לצורך זה ניעזר בזהויות הבאות: [math]\displaystyle{ \sin(180+\alpha)=-\sin \alpha,\cos(180+\alpha)=-\cos \alpha }[/math]\ (הן נובעות מהזהויות של זוית משלימה ל180 והזהויות הקודמות), ולכן הבחירה [math]\displaystyle{ \phi=180+\theta }[/math] היא הבחירה המוצלחת!
בסה"כ: [math]\displaystyle{ \overline{z}=r\text{cis}-\theta,-z=r\text{cis}180+\theta }[/math].
תרגיל
שורשים של פולינם
ראיתם בהרצאה שלכל פולינום, אם יש לו שורש מרוכב אז גם הצמוד שלו הוא שורש. בנוסף, המשפט היסודי של האלגברה אומר שכל פולינום מעל הממשיים מתפרק לגורמים ממשיים ממעלה 1 או 2. עכשיו נמצא פירוק כזה לפולינום פשוט.
תרגיל
פרקו את הפולינום: [math]\displaystyle{ x^5+2 }[/math] לגורמים ממשיים ממעלה 1 או 2.
פתרון
ראשית נרשום את הפולינום כמשוואה במרוכבים: [math]\displaystyle{ z^5=-2 }[/math], ולצורך נוחות נעביר את המספר מימין להצגה פולרית: [math]\displaystyle{ -2=2cis\pi }[/math]. עכשיו נשתמש בדה-מואבר: אנחנו מחפשים את כל המספרים המקיימים את המשוואה, ולכן מתקיים: [math]\displaystyle{ z=\sqrt[5]{2}cis\frac{\pi}{5}+\frac{2\pi k}{5},k=0,\dots 4 }[/math]...
כעת, ניקח מהשורשים את הממשיים (חייב להיות לפחת אחד, כי 5 מספר אי-זוגי), ואותם נשים בגורם מהצורה [math]\displaystyle{ (x-x_0) }[/math]. לכל זוג שורשים מרוכבים (שורש והצמוד שלו), נמצא את הגורם ממעלה 2 המתאים להם המתקבל ממכפלת הגורמים הליניאריים המרוכבים: [math]\displaystyle{ (x-z_0)(x-\overline{z_0})=x^2-(z_0+\overline{z_0})x+z_0\overline{z_0}=x^2-2Re(z_0)x+|z_0|^2 }[/math]. וכאן כל המקדמים ממשיים.
הזויות של השורשים הן: [math]\displaystyle{ \{\frac{\pi}{5},\frac{3\pi}{5},\frac{5\pi}{5}=\pi,\frac{7\pi}{5},\frac{9\pi}{5}\} }[/math]. הזוית היחידה שנותנת שורש ממשי היא [math]\displaystyle{ \pi }[/math], וממנה נקבל את הגורם [math]\displaystyle{ (x+\sqrt[5]{2}) }[/math].
הזוגות של הזוית הצמודות הן: [math]\displaystyle{ \{\frac{\pi}{5},\frac{9\pi}{5}\},\{\frac{3\pi}{5},\frac{7\pi}{5}\} }[/math].
מהצמד הראשון נקבל את הגורם: [math]\displaystyle{ (x-\sqrt[5]{2}\text{cis}\frac{\pi}{5})(x-\sqrt[5]{2}\text{cis}\frac{9\pi}{5})=x^2-2Re(\sqrt[5]{2}\text{cis}\frac{\pi}{5})x+\sqrt[5]{4}=x^2-2\cdot \sqrt[5]{2}\cos \frac{\pi}{5}+\sqrt[5]{4} }[/math].
מהצמד השני נקבל את הגורם: [math]\displaystyle{ (x-\sqrt[5]{2}\text{cis}\frac{3\pi}{5})(x-\sqrt[5]{2}\text{cis}\frac{7\pi}{5})=x^2-2Re(\sqrt[5]{2}\text{cis}\frac{3\pi}{5})x+\sqrt[5]{4}=x^2-2\cdot \sqrt[5]{2}\cos \frac{3\pi}{5}+\sqrt[5]{4} }[/math].
כעת הפירוק הוא: [math]\displaystyle{ x^5+2=(x+\sqrt[5]{2})(x^2-2\cdot \sqrt[5]{2}\cos \frac{\pi}{5}+\sqrt[5]{4})(x^2-2\cdot \sqrt[5]{2}\cos \frac{3\pi}{5}+\sqrt[5]{4}) }[/math].