שיחה:88-195 בדידה לתיכוניסטים קיץ תשעב: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 111: שורה 111:


: שכחת את ()P כמעט בכל מקום. חוץ מזה לא הבנתי לאן נעלם <math>\left | (B/A)\cap (A/B) \right |</math> --[[משתמש:Grisha|Grisha]] 01:29, 25 ביולי 2012 (IDT)
: שכחת את ()P כמעט בכל מקום. חוץ מזה לא הבנתי לאן נעלם <math>\left | (B/A)\cap (A/B) \right |</math> --[[משתמש:Grisha|Grisha]] 01:29, 25 ביולי 2012 (IDT)
ניסיתי לתקן וכל הכתב התחרבש.. בעקרון ברור שהחיתוך של מה שרשמת ריק, מוכיחים את זה בקלות.. עם הנחה בשלילה


== שאלה 5 ==
== שאלה 5 ==

גרסה מ־09:40, 25 ביולי 2012

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

שאלות

שאלה 3 בש.ב

בסעיף ארבע בשאלה זו מורידים את הנקודון פי מקבוצת החזקה של A דבר זה ישפיע רק אם פי נמצאת בקבוצה A ודבר זה לא כתוב. איך אני יכול לדעת האם אני צריך להחסיר עוד אחד או שלא? האם פי היא איבר בA?

שים לב, זה לא משנה אם הקבוצה הריקה היא איבר ב-A או לא. [math]\displaystyle{ \{A\} }[/math] הוא הנקודון שמכיל את A ולא הקבוצה A עצמה, יש הבדל. --ארז שיינר

אתה יכול להסביר את זה עוד פעם?

תרשום במפורש את איברי הקבוצה P(A) כאשר A={1,2}. ואחר כך תחסיר ממנה את [math]\displaystyle{ \{\phi\} }[/math]. מה קיבלת? --Grisha 17:08, 19 ביולי 2012 (IDT)

אההה אוקי.

שאלה 6 בשעורי בית

בכל הסעיפים צריך להוכיח או להפריך האם היחסים הבאים הם יחסי שקילות, אבל לא רשמו על איזו קבוצה הם יחסי שקילות עליה.

רשום שיחסים מוגדרים על קבוצה A. זה לא משנה מהם איברים של A. --Grisha 16:56, 19 ביולי 2012 (IDT)

אוקי הבנתי.

שאלה 3

בשאלה 3 סעיף 4 מה הסדר פעולות של חיסור לא אמור להיות סוגריים על מה שמחסרים קודם????

זה בדומה לפעולת חיסור הרגילה - אם אתה כובת a-b-c, אתה מבצע את זה לפי סדר ההופעה משמאל לימין. גם כאן זה לפי סדר ההופעה. --Grisha 16:58, 19 ביולי 2012 (IDT)

שאלה 3 סעיף 5

איך ניתן לחשב את מספר האיברים באיחוד שבין שתי הקבוצות? חישבתי את מספר האיברים של כל קבוצה בנפרד (בלי סימן האיחוד ביניהן), אבל אני לא יודע איך להמשיך.

תנסה לחשב את זה עבור 2-3 דוגמאות. תחשוב כמה איברים שונים וכמה משותפים יש בקבוצות אלה. --Grisha 19:26, 19 ביולי 2012 (IDT)

עשיתי שלוש דוגמאות שונות, וקיבלתי שלוש תוצאות שונות. פעם אחת כל האיברים היו משותפים, בפעם אחרת רק 8 מתוך 16, ובפעם השלישית רק 4 מתוך 16...

ברור שיצאו מספרים שונים. תנסה להבין מהו קשר בינם לבין k, m ו- n. או תיעזר בדיאגרמות ון. --Grisha 22:36, 19 ביולי 2012 (IDT)

עדיין לא הבנתי את הסעיף, אפשר לקבל כיוון נוסף? לא הצלחתי להבין איך מחשבים את האיחוד או החיתוך של שני הצדדים.

לא מתרגל- אנסה לעזור..אם יש לך איחוד של קבוצות נגיד תרצה לחשב את האיחוד של {1,2},{1,2,3} האיחוד שלהם הוא {1,2,3}. בקבוצה הראשונה יש 2 איברים ובשנייה יש 3 ואם נחבר סה"כ 5, אך ספרנו את מה שמשותף פעמיים (את 1 ו-2 במקרה הזה)- מה שניתן לראות גם בדיאגרמת וון ולכן נרצה להוריד זאת. ומכאן נגיע שאיחוד הקבוצה שווה לחיבור של העוצמה של קבוצה a ועוד העוצמה של b פחות החיתוך בינהן. או בדוגמא שלנו- 5-2=3 סה"כ 3 איברים באיחוד מה שמתאים לעוצמה של {1,2,3}.מקווה שעוזר. והחיתוך נתון בשאלה אז פשוט נעזרים בזה.

שאלה 7.ב'

האם בסעיף הזה מספיק להוכיח כי "X\(X\A) = A" ?

אם זה כולל הסבר למה זה שקול למה ששואלים, אז כן. --Grisha 22:39, 19 ביולי 2012 (IDT)

רגע אז בעצם למה הם מתכוונים באיחוד המשותף הזה, עוברים איבר איבר ב X/A ומחסירים את X מהאיבר הזה? אם כן הזה זה דיי טריויאלי שזה באמת X/(X/A) = A .

אז תכתוב את זה מסודר. --Grisha 19:49, 20 ביולי 2012 (IDT)

שאלה 6

האם לדוגמא בסעיף ב' הכוונה ב '/' זה החיסור של קבוצות או קבוצת המנה?

בשאלה זו השתמשנו ב- \ שמשמעותו הפשר של קבוצות. קבוצת המנה רושמים אחרת, עם /. --Grisha 13:08, 20 ביולי 2012 (IDT)

שאלה 5

לא הבנתי מה זה R, נגיד [math]\displaystyle{ A=\{1,2,3\} }[/math] ו [math]\displaystyle{ A2=\{2,3\} }[/math] [math]\displaystyle{ A1=\{1,2\} }[/math] אז למה שווה R? ל [math]\displaystyle{ \{(1,2)(2,1),(2,2),(2,3),(3,2),(3,3)\} }[/math] ?

כמעט. אבל אלה לא כל האיברים. --Grisha 16:45, 20 ביולי 2012 (IDT)

אז למה שווה R?

חסר לך איבר אחד. --Grisha 21:17, 20 ביולי 2012 (IDT)

מה אם כך חסר ב R? ולא הבנתי את הניסוח של R, מה זאת אומרת שקיים i עבורו x,y נמצאים בו? זה בעצם להגיד שהוא לא קבוצה ריקה

זה אומר זוג סדור (x,y) שייך ל- R רק אם גם x וגם y שייכים לאותה קבוצה [math]\displaystyle{ A_i }[/math]. --Grisha 17:38, 21 ביולי 2012 (IDT)



לפי מה שהבנתי מהשאלות והתשובות: zzz R=A*A zzz (להתעלם מה- Z ) כלומר - R היא המכפלה הקרטזית של A ? וכתוב ש R מוגדר עבור Ai שמקיים( משהו- לא רלוונטי ) - הכוונה ב Ai היא לכל ה- A1 עד An ? ועוד שאלה : הגדרנו בכיתה שאיחוד אוסף על תתי הקבוצות של A הוא A - לכן סעיף ב הוא לא מיותר? ואם לא, האם איחוד אוסף כל תתי הקבוצות של קבוצה ייתן את הקבוצה הגדולה ("המקורית " ) ?

בואו נדייק. R הוא תת-קבוצה של [math]\displaystyle{ A\times A }[/math] ולאו דווקא שווה לה. לא כתוב ש- [math]\displaystyle{ A_i }[/math] מקיים משהו, להיפך, כתוב שזוג סדור (x,y) שייך ל- R רק אם גם x וגם y שייכים לאותה קבוצה [math]\displaystyle{ A_i }[/math], כאשר i יכול להיות מספר טבעי כלשהו בין 1 ל- n. כלומר "קיים" ולא "לכל".
לגבי השאלה השניה - לא כתוב בשאלה שאיחוד כל [math]\displaystyle{ A_i }[/math] נותן קבוצה A. זאת כיוון שלא מדברים על "כל" תת-קבוצות אלא רק על אוסף מסוים. --Grisha 23:37, 22 ביולי 2012 (IDT)

תרגיל 2 שאלה 5

בסעיף א' צריך להוכיח או להפריך.. לכאורה צריך להביא מקרה בו ימין נכון ושמאל לא כדי להפריך, וכדי להוכיח מספיק לי להראות ששמאל תמיד נכון?

על מנת להוכיח צריך להראות שאם ימין נתון שמאל בהכרח נכון, כן. --ארז שיינר

שאלה על תרגיל 1 שאלה 4

"לכל איש עם שם יש שם נוסף (שונה מהראשון)" למה צריך לכלול את הקיום של הn גם בצד השני של הגרירה ב"אז" ולא רק את הקיום של השם הנוסף- הn'? הרי כללנו את קיומו כבר בהנחה של ה"אם". תודה.

תחום הפעולה של כמת [math]\displaystyle{ \exist n }[/math] הוא רק צד אחד של פעולת גרירה. אפשר להוציא אותו מחוץ לסוגריים. --Grisha 11:24, 23 ביולי 2012 (IDT)

תרגיל 2, שאלה 1

אפשר להגיד ש [math]\displaystyle{ (A \cup B)\setminus (A \triangle B)=A \cap B }[/math] נובע מהגדרת ההפרש הסימטרי או שצריך להוכיח את זה?

זה לא נובע ישירות. כן צריך להוכיח את זה. --Grisha 23:29, 22 ביולי 2012 (IDT)

תרגיל 1 שאלה 3 סעיף ב'

רוצה לוודא שהבנתי את התשובות- אנחנו צריכים להתייחס למשפט 6 כ"אם" ולראות האם 6-->5, מקבל ערך אמת.יצרנו עולם שבו יש רק אדם אחד שאין לו שם ולכן מצד אחד משפט 6 נכון בגלל שf גורר משהו- תמיד נכון. מצד שני שקרי כי נוצר מצב שבו יש שני אנשים- מה שלא נכון לעולם שיצרנו.אז בעצם יוצא מצב "לא מוגדר" שכזה? וזה נופל פה? כי הצד של ה-6 סוג של "לא מוגדר"? מקווה שניסחתי ברור..

טענה 6 נכונה בעולם שהגדרנו. אם תסתכל על הנוסחא של טענה 6 (בשאלה 2), תראה שהיא מוגדרת [math]\displaystyle{ (\exist n\in\N: R(p,n))\to ... }[/math]. החלק הראשון (לפני גרירה) הינו שקרי ולכן לא משנה מה יהיה אחרי קשר גרירה, כי משקר אפשר להסיק כל דבר וזה יהיה אמת. לכן טענה 6 נכונה ואני אפילו לא מתייחס לשאלה האם קיים בנאדם שני בעולם שלנו. טענה 5 כפי שכתוב בתשובה היא שקרית. ולכן מקבלים ש- [math]\displaystyle{ (6)\to (5) }[/math] שקרית. (בתשובה יש טעות קטנה של מספור הטענות, הועלה קובץ מתוקן)--Grisha 20:49, 23 ביולי 2012 (IDT)
  • הבנתי! ואז זה t--> f אז זה false סה"כ. אם לא אכפת לך, אני רוצה לקחת את זה עוד צעד ולשאול:

אם לצורך העניין משפט 5 היה: אם קיימים 2 אנשים אז הם עם אותו שם- אז בעולם שיצרתי זה כן היה גורר. כי אז שוב ההנחה של 6 שגויה ולכן סה"כ הוא אמת (באופן ריק) אבל הפעם גם ההנחה של 5 שגויה (כי אין 2 אנשים בעולם שיצרנו) ולכן נוצר מצב ריק של true גורר true?

הרעיון נכון. כדי להיות לגמרי בטוח תכתוב במפורש את טענה 5 החדשה שייצרת. --Grisha 06:27, 24 ביולי 2012 (IDT)

חיתוך

אם יודעים משהו על העוצמה של A חיתוך B ניתן להסיק משהו ישירות על העוצמה של (P(A חיתוך (P(B

וודאי שכן. (P(B נקראת קבוצת חזקה. כמה איברים יש בקבוצה זו אם ב- B יש n איברים? אם אתה לא זוכר מהתרגול/הרצאה, אז תנסה לבדוק את זה עבור n=0,1,2,3. --Grisha 06:29, 24 ביולי 2012 (IDT)
    • כנראה שלא ניסחתי את שאלתי טוב,זה זכור לי שזה 2 בחזקת n העוצמה של קבוצת החזקה. רציתי לדעת פשוט במילים אחרות אם אפשר להסיק על העוצמה של p(a) חיתוך p(b) (ביחד) מהעוצמה של pa חיתוך pb (בנפרד)? זה קשור לשאלה עם ההפרש הסימטרי בין קבוצות החזקה שאלה 3 סעיף 2

-כן.. אפשר כך:

<)math>\left |p(A)\Delta p(B) \right |= \left |(A/B)\cup (B/A) \right |=\left |p(A)/p(B) \right |+\left | p(B)/p(A) \right |-\left | (p(B)/p(A))\cap (p(A)/p(B)) \right |= \left | p(A \right |-\left | p(A\cap B) \right |+\left | p(B) \right |-\left | p(A\cap B) \right |=2^{n}+2^{m}-2\cdot 2^{k}=2^{n}+2^{m}-2^{k+1}</math>

על פי ההגדרה של ההפרש הסימטרי.. --Dvir1352 23:22, 24 ביולי 2012 (IDT)

שכחת את ()P כמעט בכל מקום. חוץ מזה לא הבנתי לאן נעלם [math]\displaystyle{ \left | (B/A)\cap (A/B) \right | }[/math] --Grisha 01:29, 25 ביולי 2012 (IDT)

ניסיתי לתקן וכל הכתב התחרבש.. בעקרון ברור שהחיתוך של מה שרשמת ריק, מוכיחים את זה בקלות.. עם הנחה בשלילה

שאלה 5

לא הבנתי מה אמור להיות R.. ומה זאת אומרת "קיים i עבורו X ו Y שייכים אליו"... ברור שקיימים אצלו Xו Y כל עוד הוא לא קבוצה ריקה..

לא הבנתי מה זה היחס הזה, ולמה אמרו "קיים i"..

כתוב בשאלה שזוג סדור (x,y) שייך ל- R רק אם גם x וגם y שייכים לאותה קבוצה [math]\displaystyle{ A_i }[/math], כאשר i יכול להיות מספר טבעי כלשהו בין 1 ל- n. אני ממליץ לעבור עוד הפעם על ניסוח השאלה ולבנות איזשהו יחס שמקיים את התכונות שהוגדרו. גם מומלץ לבדוק שאלות שכבר נענו, יכול להיות שהיה כבר משהו דומה - [[1]]. --Grisha 19:00, 24 ביולי 2012 (IDT)

אבל מהם x ו y? זה סתם מספרים? כי אם הקבוצה לא ריקה אז קיימים בה x,y... מה זאת אומרת "קיים i?"

i זה אינדקס של קבוצה [math]\displaystyle{ A_i }[/math], כך ש- [math]\displaystyle{ x,y \in A_i }[/math]. חוץ מזה, x ו- y לא חייבים להיות מספרים, הם איברי קבוצה שאתה לא יודע. --Grisha 20:34, 24 ביולי 2012 (IDT)

אבל למה רשמו "קיים i"? והאם זה בעצם במילים אחרות איחוד של קבוצות החזקה של Ai?

זה לא קשור בכלל לקבוצות חזקה. כתוב קיים i כי קיים i כזה ש- [math]\displaystyle{ x,y \in A_i }[/math]. זה אומר למעשה שקיימת קבוצה [math]\displaystyle{ A_i }[/math] מסוימת.
אם, לדוגמא, [math]\displaystyle{ x\in A_1 \and y\in A_3 }[/math] אז זוג סדור (x,y) לא שייך ליחס R. --Grisha 01:33, 25 ביולי 2012 (IDT)

שאלה 9

הטבעיים זה כולל אפס או לא כולל? m ו-n לא חייבים להיות שונים נכון? למשל בהוכחה של הרפלקסיביות...

[math]\displaystyle{ \N }[/math] מתחיל מ- 1. לא כתוב ש- [math]\displaystyle{ m\ne n }[/math] לכן אפשר להניח הכל. --Grisha 20:31, 24 ביולי 2012 (IDT)