קוד:התמרת איברים בטור ומשפט רימן: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "כבר ראינו שקיבוץ איברים בטור זה בעייתי, אבל מה עם חוק החילוף? $\\$ דוגמה: נגדיר $S=1-\frac12+\frac13-\f...")
 
אין תקציר עריכה
שורה 1: שורה 1:
כבר ראינו שקיבוץ איברים בטור זה בעייתי, אבל מה עם חוק החילוף?
כבר ראינו שקיבוץ איברים בטור זה בעייתי, אבל מה עם חוק החילוף?
$\\$
דוגמה: נגדיר $S=1-\frac12+\frac13-\frac14+\frac15-\cdots $, זה מוגדר משום שהטור מתכנס לפי מבחן לייבניץ (לטורים מחליפי סימן). נוכיח בהמשך ש- $S=\ln 2 $ , אבל לעת עתה ברור ש- $S>0 $ משום שאפשר לקבץ את האיבר במקום ה- $2n+1$ עם האיבר במקום ה- $2n+2$ ולקבל הפרש של 2 שברים מהצורה $\frac{1}{2n-1}-\frac{1}{2n+2} $ בכל מחובר וכל אחד מהם חיובי אז גם הטור חיובי. נסדר את איברי הטור בצורה שונה:


$S=(1-\frac12-\frac14)+(\frac13-\frac16-\frac18)+\cdots =\sum_{n=1}^\infty (\frac{1}{2n-1}-\frac{1}{4n-2}-\frac{1}{4n})=\\ \sum_{n=1}^\infty (\frac{1}{4n-2}-\frac{1}{4n})=\frac{1}{2} \sum_{n=1}^\infty (\frac{1}{2n-1} - \frac{1}{2n}) = \frac{1}{2} S \\
\begin{example}
\Rightarrow S=\frac{1}{2} S \Rightarrow S=0 $
נגדיר $S=1-\frac12+\frac13-\frac14+\frac15-\cdots $, זה מוגדר משום שהטור מתכנס לפי מבחן לייבניץ (לטורים מחליפי סימן). נוכיח בהמשך ש- $S=\ln 2 $ , אבל לעת עתה ברור ש- $S>0 $ משום שאפשר לקבץ את האיבר במקום ה- $2n+1$ עם האיבר במקום ה- $2n+2$ ולקבל הפרש של 2 שברים מהצורה $\frac{1}{2n-1}-\frac{1}{2n+2} $ בכל מחובר וכל אחד מהם חיובי אז גם הטור חיובי. נסדר את איברי הטור בצורה שונה:
 
$$S=(1-\frac12-\frac14)+(\frac13-\frac16-\frac18)+\cdots =\sum_{n=1}^\infty (\frac{1}{2n-1}-\frac{1}{4n-2}-\frac{1}{4n})=$$
$$\sum_{n=1}^\infty (\frac{1}{4n-2}-\frac{1}{4n})=\frac{1}{2} \sum_{n=1}^\infty (\frac{1}{2n-1} - \frac{1}{2n}) = \frac{1}{2} S $$
$$\Rightarrow S=\frac{1}{2} S \Rightarrow S=0 $$


התקבלה סתירה! אם כך, מתי כן אפשר להחליף את איברי הטור בלי לשנות דבר?
התקבלה סתירה! אם כך, מתי כן אפשר להחליף את איברי הטור בלי לשנות דבר?
$\\$
\end{example}


\underline{הגדרה:} נתון טור $(A) \sum_{n=1}^\infty a_n $ והעתקה $\sigma:\mathbb{N}\to\mathbb{N} $ חח"ע ועל אז הטור $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ נקרא תמורה של $A$
\begin{definition}
$\\$
נתון טור $(A) \sum_{n=1}^\infty a_n $ והעתקה $\sigma:\mathbb{N}\to\mathbb{N} $ חח"ע ועל אז הטור $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ נקרא תמורה של $A$
\end{definition}


\underline{טענת עזר:} יהי $(A) \sum_{n=1}^\infty a_n $ ו- $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ תמורה על $A$ . אם $\forall n : a_n\geq 0 $ ו-$A$ מתכנס אז גם $A'$ מתכנס.
\begin{thm}[טענת עזר]
יהי $(A) \sum_{n=1}^\infty a_n $ ו- $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ תמורה על $A$.\\
אם $\forall n : a_n\geq 0 $ ו-$A$ מתכנס אז גם $A'$ מתכנס.
\end{thm}


\underline{הוכחה:} $A$ מתכנס ולכן $\exists C \forall n : \sum_{k=1}^n a_k \leq C $ כעת, ניקח את $N=\max\{\sigma(1),\cdots,\sigma(n)\} $ ונראה כי $\sum_{k=1}^n a_{\sigma(k)} \leq \sum_{k=1}^N an \leq C $ ולכן מתכנס. נסו להוכיח לבד למה $A'=A$  
\begin{proof}
$A$ מתכנס ולכן $\exists C \forall n : \sum_{k=1}^n a_k \leq C $ כעת, ניקח את $N=\max\{\sigma(1),\cdots,\sigma(n)\} $ ונראה כי $\sum_{k=1}^n a_{\sigma(k)} \leq \sum_{k=1}^N an \leq C $ ולכן מתכנס.\\
באותה דרך מוכיחים ש- $A'=A$  
\end{proof}


$\\$
\begin{thm}
\underline{משפט:} יהי $(A) \sum_{n=1}^\infty a_n $ ו- $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ תמורה על $A$ . אם $A$ מתכנס בהחלט אז גם $A'$ מתכנס בהחלט ומתקיים $A=A'$
יהי $(A) \sum_{n=1}^\infty a_n $ ו- $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ תמורה על $A$ . אם $A$ מתכנס בהחלט אז גם $A'$ מתכנס בהחלט ומתקיים $A=A'$
\end{thm}


\underline{הוכחה:}$ \sum_{n=1}^\infty a_n = \sum a_n^+ - \sum a_n^- $ כאשר $a_n^+ $ הם האיברים החיוביים בטור ו- $a_n^- $ הם הערך המוחלט של האיברים השליליים בטור. שני הטורים מתכנסים (מבחן השוואה ראשון עם הטור המקורי). כעת נסתכל על $\sum a_{\sigma(n))} = \sum a_{\sigma(n)}^+ - \sum_{\sigma(n)}^- $, אבל כל טור פה הוא תמורה של אחד הטורים שכתבנו רק לפני רגע ואלה טוריים חיוביים ולכן, לפי טענת העזר, הם שווים. המסקנה היא ש- $\sum a_{\sigma(n)} = \sum a_n^+ -\sum a_n^- = \sum a_n $
\begin{proof}
$\\$
$ \sum_{n=1}^\infty a_n = \sum a_n^+ - \sum a_n^- $ כאשר $a_n^+ $ הם האיברים החיוביים בטור ו- $a_n^- $ הם הערך המוחלט של האיברים השליליים בטור. שני הטורים מתכנסים (מבחן השוואה ראשון עם הטור המקורי). כעת נסתכל על
\underline{משפט רימן:} יהי טור $\sum_{n=1}^\infty a_n $ מתכנס על תנאי, אזי לכל $p\in \mathbb{R}$ וגם עבור $p=\pm \infty $ קיימת תמורה $\sigma:\mathbb{N}\to\mathbb{N} $ כך ש- $\sum_{n=1}^\infty a_{\sigma(n)} = p $
$$\sum a_{\sigma(n))} = \sum a_{\sigma(n)}^+ - \sum a_{\sigma(n)}^- $$
אבל כל טור פה הוא תמורה של אחד הטורים שכתבנו רק לפני רגע ואלה טוריים חיוביים ולכן, לפי טענת העזר, הם שווים. המסקנה היא ש-
$$\sum a_{\sigma(n)} = \sum a_n^+ -\sum a_n^- = \sum a_n $$
\end{thm}


\underline{הוכחה:} נראה שאם הטור מתכנס בתנאי אז $\sum a_n^+ , \sum a_n^- =\infty $ (נסו להבין לבד מה קורה אם זה לא היה ככה), וגם $a_n\to 0$ (כי זה תנאי הכרחי להתכנסות). כדי שהטור יתכנס ל- $p$ ממשי, נחבר איברים חיוביים של הטור שוב ושוב עד שנגיע למספר שגדול מ- $p$, בשלב זה נחסר איברים מ- $a_n^- $ שוב ושוב עד שנגיע למספר שקטן מ- $p$, כעת שוב נחזור לחבר ואז כשנעבור את $p$ נתחיל לחסר... הטור שקיבלנו שואף ל-$p$ (כי $a_n\to 0 $ ומאיך שבנינו את הטור) והוא גם תמורה של הטור המקורי. ברור שזה חח"ע אבל מדוע זה על? פשוט מכך שמכל שלב בטור והלאה, אם רק נחבר $a_n^+ $ או רק נחסר $a_n^- $ נגיע לאינסוף או מינוס אינסוף בהתאמה. מה אם $p=\infty$? נחבר מספיק איברים מ- $a_n^+ $ עד שנעבור את $10$ ונחסר איבר מ- $a_n^- $, ואז נחבר מספיק איברים חיוביים עד שנעבור את ה-$100$ ושוב נחסר $a_n^-$, עכשיו נחבר שוב מספיק איברים עד שנעבור את $1000$ וכו'... באופן אנלוגי ל- $p=-\infty $
\begin{thm}[משפט רימן]
יהי טור $\sum_{n=1}^\infty a_n $ מתכנס על תנאי, אזי לכל $p\in \mathbb{R}$ וגם עבור $p=\pm \infty $ קיימת תמורה $\sigma:\mathbb{N}\to\mathbb{N} $ כך ש- $\sum_{n=1}^\infty a_{\sigma(n)} = p $
\end{thm}
\begin{proof}
נראה שאם הטור מתכנס בתנאי אז $\sum a_n^+ , \sum a_n^- =\infty $ משום שאם שניהם היו מתכנסים אז הטור היה מתכנס בהחלט ואם רק אחד מהם היה מתכנס אז הטור היה מתבדר. כמו כן $a_n\to 0$ (כי זה תנאי הכרחי להתכנסות).\\
כדי שהטור יתכנס ל- $p$ ממשי, נחבר איברים חיוביים של הטור שוב ושוב עד שנגיע למספר שגדול מ- $p$, בשלב זה נחסר איברים מ- $a_n^- $ שוב ושוב עד שנגיע למספר שקטן מ- $p$, כעת שוב נחזור לחבר ואז כשנעבור את $p$ נתחיל לחסר... הטור שקיבלנו שואף ל-$p$ (כי $a_n\to 0 $ ומאיך שבנינו את הטור) והוא גם תמורה של הטור המקורי. ברור שזה חח"ע אבל מדוע זה על? פשוט מכך שמכל שלב בטור והלאה, אם רק נחבר $a_n^+ $ או רק נחסר $a_n^- $ נגיע לאינסוף או מינוס אינסוף בהתאמה. מה אם $p=\infty$? נחבר מספיק איברים מ- $a_n^+ $ עד שנעבור את $10$ ונחסר איבר מ- $a_n^- $, ואז נחבר מספיק איברים חיוביים עד שנעבור את ה-$100$ ושוב נחסר $a_n^-$, עכשיו נחבר שוב מספיק איברים עד שנעבור את $1000$ וכו'... באופן דומה ל- $p=-\infty $
\end{proof}

גרסה מ־12:41, 3 בספטמבר 2014

כבר ראינו שקיבוץ איברים בטור זה בעייתי, אבל מה עם חוק החילוף?

\begin{example} נגדיר $S=1-\frac12+\frac13-\frac14+\frac15-\cdots $, זה מוגדר משום שהטור מתכנס לפי מבחן לייבניץ (לטורים מחליפי סימן). נוכיח בהמשך ש- $S=\ln 2 $ , אבל לעת עתה ברור ש- $S>0 $ משום שאפשר לקבץ את האיבר במקום ה- $2n+1$ עם האיבר במקום ה- $2n+2$ ולקבל הפרש של 2 שברים מהצורה $\frac{1}{2n-1}-\frac{1}{2n+2} $ בכל מחובר וכל אחד מהם חיובי אז גם הטור חיובי. נסדר את איברי הטור בצורה שונה:

$$S=(1-\frac12-\frac14)+(\frac13-\frac16-\frac18)+\cdots =\sum_{n=1}^\infty (\frac{1}{2n-1}-\frac{1}{4n-2}-\frac{1}{4n})=$$ $$\sum_{n=1}^\infty (\frac{1}{4n-2}-\frac{1}{4n})=\frac{1}{2} \sum_{n=1}^\infty (\frac{1}{2n-1} - \frac{1}{2n}) = \frac{1}{2} S $$ $$\Rightarrow S=\frac{1}{2} S \Rightarrow S=0 $$

התקבלה סתירה! אם כך, מתי כן אפשר להחליף את איברי הטור בלי לשנות דבר? \end{example}

\begin{definition} נתון טור $(A) \sum_{n=1}^\infty a_n $ והעתקה $\sigma:\mathbb{N}\to\mathbb{N} $ חח"ע ועל אז הטור $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ נקרא תמורה של $A$ \end{definition}

\begin{thm}[טענת עזר] יהי $(A) \sum_{n=1}^\infty a_n $ ו- $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ תמורה על $A$.\\ אם $\forall n : a_n\geq 0 $ ו-$A$ מתכנס אז גם $A'$ מתכנס. \end{thm}

\begin{proof} $A$ מתכנס ולכן $\exists C \forall n : \sum_{k=1}^n a_k \leq C $ כעת, ניקח את $N=\max\{\sigma(1),\cdots,\sigma(n)\} $ ונראה כי $\sum_{k=1}^n a_{\sigma(k)} \leq \sum_{k=1}^N an \leq C $ ולכן מתכנס.\\ באותה דרך מוכיחים ש- $A'=A$ \end{proof}

\begin{thm} יהי $(A) \sum_{n=1}^\infty a_n $ ו- $(A') \sum_{n=1}^\infty a_{\sigma(n)} $ תמורה על $A$ . אם $A$ מתכנס בהחלט אז גם $A'$ מתכנס בהחלט ומתקיים $A=A'$ \end{thm}

\begin{proof} $ \sum_{n=1}^\infty a_n = \sum a_n^+ - \sum a_n^- $ כאשר $a_n^+ $ הם האיברים החיוביים בטור ו- $a_n^- $ הם הערך המוחלט של האיברים השליליים בטור. שני הטורים מתכנסים (מבחן השוואה ראשון עם הטור המקורי). כעת נסתכל על $$\sum a_{\sigma(n))} = \sum a_{\sigma(n)}^+ - \sum a_{\sigma(n)}^- $$ אבל כל טור פה הוא תמורה של אחד הטורים שכתבנו רק לפני רגע ואלה טוריים חיוביים ולכן, לפי טענת העזר, הם שווים. המסקנה היא ש- $$\sum a_{\sigma(n)} = \sum a_n^+ -\sum a_n^- = \sum a_n $$ \end{thm}

\begin{thm}[משפט רימן] יהי טור $\sum_{n=1}^\infty a_n $ מתכנס על תנאי, אזי לכל $p\in \mathbb{R}$ וגם עבור $p=\pm \infty $ קיימת תמורה $\sigma:\mathbb{N}\to\mathbb{N} $ כך ש- $\sum_{n=1}^\infty a_{\sigma(n)} = p $ \end{thm} \begin{proof} נראה שאם הטור מתכנס בתנאי אז $\sum a_n^+ , \sum a_n^- =\infty $ משום שאם שניהם היו מתכנסים אז הטור היה מתכנס בהחלט ואם רק אחד מהם היה מתכנס אז הטור היה מתבדר. כמו כן $a_n\to 0$ (כי זה תנאי הכרחי להתכנסות).\\ כדי שהטור יתכנס ל- $p$ ממשי, נחבר איברים חיוביים של הטור שוב ושוב עד שנגיע למספר שגדול מ- $p$, בשלב זה נחסר איברים מ- $a_n^- $ שוב ושוב עד שנגיע למספר שקטן מ- $p$, כעת שוב נחזור לחבר ואז כשנעבור את $p$ נתחיל לחסר... הטור שקיבלנו שואף ל-$p$ (כי $a_n\to 0 $ ומאיך שבנינו את הטור) והוא גם תמורה של הטור המקורי. ברור שזה חח"ע אבל מדוע זה על? פשוט מכך שמכל שלב בטור והלאה, אם רק נחבר $a_n^+ $ או רק נחסר $a_n^- $ נגיע לאינסוף או מינוס אינסוף בהתאמה. מה אם $p=\infty$? נחבר מספיק איברים מ- $a_n^+ $ עד שנעבור את $10$ ונחסר איבר מ- $a_n^- $, ואז נחבר מספיק איברים חיוביים עד שנעבור את ה-$100$ ושוב נחסר $a_n^-$, עכשיו נחבר שוב מספיק איברים עד שנעבור את $1000$ וכו'... באופן דומה ל- $p=-\infty $ \end{proof}