קוד:טורים: הבדלים בין גרסאות בדף
Ofekgillon10 (שיחה | תרומות) אין תקציר עריכה |
Ofekgillon10 (שיחה | תרומות) אין תקציר עריכה |
||
שורה 13: | שורה 13: | ||
\underline{הסבר:} בעצם התנאי בצד שמאל זה פשוט ההגדרה ש- $s_n$ סדרת קושי, וכידוע סדרה היא מתכנסת אם ורק אם היא סדרת קושי. | \underline{הסבר:} בעצם התנאי בצד שמאל זה פשוט ההגדרה ש- $s_n$ סדרת קושי, וכידוע סדרה היא מתכנסת אם ורק אם היא סדרת קושי. | ||
$\\$ | $\\$ | ||
\underline{משפט:} אם $\sum_{n=1}^\infty a_n $ מתכנס אזי $\lim_{n\to \infty} a_n = 0 $ | \underline{משפט:} אם $\sum_{n=1}^\infty a_n $ מתכנס אזי $\lim_{n\to \infty} a_n = 0 $ (המשפט ההפוך לא נכון! ראינו שהטור ההרמוני מתבדר למרות שהאיבר הכללי שואף ל-0) | ||
\underline{הוכחה:} נראה כי $a_n=s_n-s_{n-1} $ ואז מאריתמטיקה של גבולות, $\lim_{n\to \infty} a_n = \sum_{n=1}^\infty a_n - \sum_{n=1}^\infty a_n = 0 $ | \underline{הוכחה:} נראה כי $a_n=s_n-s_{n-1} $ ואז מאריתמטיקה של גבולות, $\lim_{n\to \infty} a_n = \sum_{n=1}^\infty a_n - \sum_{n=1}^\infty a_n = 0 $ | ||
$\\$ | |||
דוגמה: הטור $\sum_{n=1}^\infty \frac{n+\sqrt{n}+1}{2n+3} $ מתבדר כי האיבר הכללי שואף לחצי | |||
$\\$ | |||
\subsection{טורים עם איברים חיוביים} | |||
\underline{משפט:} $\sum_{n=1}^\infty a_n , \forall n: a_n\geq 0 $ מתכנס אם ורק אם סדרת הסכומים החלקיים חסומה מלעיל, כלומר $\exists C \forall n : s_n\leq C $ | |||
\underline{הוכחה:} נשים לב שהסס"ח היא סדרה מונוטונית עולה במקרה שכל איברי הטור חיוביים ולכן מתכנסת ל- $\sup$ שלה. אם היא חסומה מלעיל אז הסופרימום ממשי ואז הטור מתכנס, בעוד שאם היא לא חסומה זה אומר ששואפת לאינסוף ולכן הטור מתבדר. |
גרסה מ־12:09, 16 באוגוסט 2014
\subsection{מהו טור} \underline{הגדרה:} תהי סדרה $\{a_n\}_{n=1}^{\infty} $ . נגדיר את הסדרה $s_k=\sum_{n=1}^k a_n=a_1+a_2+\cdots+a_n$ , אז $\sum_{n=1}^\infty a_n $ מוגדר להיות $\lim_{k\to\infty} s_k $ . במקרה כזה, $s_k$ נקראת סדרת הסכומים החלקיים של הטור (או בקיצור הסס"ח). אם הגבול הזה קיים אומרים שהטור מתכנס, ואחרת אומרים שהוא מתבדר. $\\$ דוגמה: הצגה עשרונית - $\sum_{n=0}^\infty \frac{a_n}{10^n} $ כש- $a_n\in\{0,1,2,3,4,5,6,7,8,9\} $ . זה מתכנס משום שהסס"ח היא סדרת קושי.
\subsection{תכונות בסיסיות של טורים} \underline{משפט:} נניח הטורים $ \sum_{n=1}^\infty a_n ,\sum_{n=1}^\infty b_n $ מתכנסים אזי $ \sum_{n=1}^\infty \alpha a_n+\beta b_n = \alpha\sum_{n=1}^\infty a_n+\beta \sum_{n=1}^\infty b_n$ .
\underline{הוכחה:} ישירות מאריתמטיקה של גבולות $\\$ \underline{מבחן קושי:} הטור $\sum_{n=1}^{\infty} a_n $ מתכנס אם ורק אם $\forall_{\epsilon>0}\exists_N \forall_{n>m>N}: |\sum_{k=m}^n a_k |<\epsilon $
\underline{הסבר:} בעצם התנאי בצד שמאל זה פשוט ההגדרה ש- $s_n$ סדרת קושי, וכידוע סדרה היא מתכנסת אם ורק אם היא סדרת קושי. $\\$ \underline{משפט:} אם $\sum_{n=1}^\infty a_n $ מתכנס אזי $\lim_{n\to \infty} a_n = 0 $ (המשפט ההפוך לא נכון! ראינו שהטור ההרמוני מתבדר למרות שהאיבר הכללי שואף ל-0)
\underline{הוכחה:} נראה כי $a_n=s_n-s_{n-1} $ ואז מאריתמטיקה של גבולות, $\lim_{n\to \infty} a_n = \sum_{n=1}^\infty a_n - \sum_{n=1}^\infty a_n = 0 $ $\\$ דוגמה: הטור $\sum_{n=1}^\infty \frac{n+\sqrt{n}+1}{2n+3} $ מתבדר כי האיבר הכללי שואף לחצי $\\$ \subsection{טורים עם איברים חיוביים} \underline{משפט:} $\sum_{n=1}^\infty a_n , \forall n: a_n\geq 0 $ מתכנס אם ורק אם סדרת הסכומים החלקיים חסומה מלעיל, כלומר $\exists C \forall n : s_n\leq C $
\underline{הוכחה:} נשים לב שהסס"ח היא סדרה מונוטונית עולה במקרה שכל איברי הטור חיוביים ולכן מתכנסת ל- $\sup$ שלה. אם היא חסומה מלעיל אז הסופרימום ממשי ואז הטור מתכנס, בעוד שאם היא לא חסומה זה אומר ששואפת לאינסוף ולכן הטור מתבדר.