אטום: הבדלים בין גרסאות בדף
אין תקציר עריכה |
אין תקציר עריכה |
||
שורה 48: | שורה 48: | ||
===ניסוי פרנק-הרץ (Franck–Hertz)=== | ===ניסוי פרנק-הרץ (Franck–Hertz)=== | ||
במעבדה זו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ (James Franck – Gustav Hertz), אשר הפכו לאחת ההוכחות הניסיוניות הראשונות למודל בוהר המהווה יסוד לפיסיקה הקוונטית. פרס נובל לפיסיקה הוענק | במעבדה זו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ (James Franck – Gustav Hertz), אשר הפכו לאחת ההוכחות הניסיוניות הראשונות למודל בוהר המהווה יסוד לפיסיקה הקוונטית. פרס נובל לפיסיקה הוענק ל[http://he.wikipedia.org/wiki/%D7%92%D7%95%D7%A1%D7%98%D7%91_%D7%94%D7%A8%D7%A5 גוסטב הרץ] ו[http://he.wikipedia.org/wiki/%D7%92'%D7%99%D7%99%D7%9E%D7%A1_%D7%A4%D7%A8%D7%A0%D7%A7 ג'יימס פרנק] עבור ניסויים אלה ב-1925. | ||
'''פוטנציאלים של עירור (excitation) ויינון (ionization)''' | '''פוטנציאלים של עירור (excitation) ויינון (ionization)''' | ||
שורה 54: | שורה 54: | ||
בליעת אנרגיה ע"י אטום ומעבר האטום למצב סטציונרי בעל אנרגיה גדולה יותר נקרא עירור. אנרגית העירור מבוטאת בדרך כלל ביחידות אלקטרון-וולט (eV). על מנת לקבוע את המצבים הסטציונריים ניתן להשתמש בהפצצת אטומים באלקטרונים. כאשר האנרגיה של אלקטרונים נמוכה, ההתנגשויות עם האטומים הן אלסטיות. כתוצאה מהבדל גדול במסות של האלקטרונים והאטומים, האלקטרונים מעבירים לאטומים רק חלק קטן מהאנרגיה שלהם. אולם כשהאנרגיה מגיעה לערך מסוים ההתנגשויות כבר אינן אלסטיות: אלקטרונים מוסרים לאטומים את כל האנרגיה שלהם, והאטומים עוברים למצב בעל אנרגיה גדולה יותר. ניסוים אלה מוכיחים את קיומם של מצבים סטציונריים באטום ומאפשרים למדוד את האנרגיות שלהם. אם אנרגית האלקטרונים מספיק גדולה, מתרחש יינון האטום - בריחת אלקטרון אחד מאטום והפיכת האטום ליון. | בליעת אנרגיה ע"י אטום ומעבר האטום למצב סטציונרי בעל אנרגיה גדולה יותר נקרא עירור. אנרגית העירור מבוטאת בדרך כלל ביחידות אלקטרון-וולט (eV). על מנת לקבוע את המצבים הסטציונריים ניתן להשתמש בהפצצת אטומים באלקטרונים. כאשר האנרגיה של אלקטרונים נמוכה, ההתנגשויות עם האטומים הן אלסטיות. כתוצאה מהבדל גדול במסות של האלקטרונים והאטומים, האלקטרונים מעבירים לאטומים רק חלק קטן מהאנרגיה שלהם. אולם כשהאנרגיה מגיעה לערך מסוים ההתנגשויות כבר אינן אלסטיות: אלקטרונים מוסרים לאטומים את כל האנרגיה שלהם, והאטומים עוברים למצב בעל אנרגיה גדולה יותר. ניסוים אלה מוכיחים את קיומם של מצבים סטציונריים באטום ומאפשרים למדוד את האנרגיות שלהם. אם אנרגית האלקטרונים מספיק גדולה, מתרחש יינון האטום - בריחת אלקטרון אחד מאטום והפיכת האטום ליון. | ||
בניסוי שלנו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ. נשתמש בשפופרת תיראטרון - טריאודה ממולאת גז עם קתודה מחוממת. מתח מאיץ מופעל בין השריג לבין הקתודה של התיראטרון ( | ==מערכת הניסוי== | ||
האלקטרונים אשר נפלטים מהקתודה המחוממת ומואצים לעבר השריג (בשל הפוטנציאל החיובי) מתנגשים עם אטומי הגז | |||
הזרם במעגל הקולט | '''ספקרטום הפליטה של מימן''' | ||
10-10 A. פוטנציאל העירור של אטומי הגז בתיראטרון שווה למתח המאיץ שעבורו מופיע זרם במעגל של הקולט. | |||
את פוטנציאל היינון קובעים לפי עלייה חזקה בזרם השריג. עלייה זאת קשורה לנטרול של המטען האלקטרוני המרחבי ליד הקתודה על ידי היונים החיוביים שהופיעו | המערכת מורכבת ממנורת מימן הפועלת תחת מתח של <math>5000V</math>. אטומי המימן מעוררים ופולטים קרינת אור נראה. כדי למצוא את אורכי הגל של האור הנפלט נשתמש בספקטרוסקופ, ראו איור 2. בספקטרומטר, האור הנפלט מהמימן החם עובר דרך שריג עקיפה ויוצר תמונת התאבכות. בתמונה זו מופרדים הגלים לפי אורך הגל שלהם, ועל ידי כיול ניתן לראות את סדרת אורכי הגל של הקרינה הנפלטת. | ||
[[קובץ:מנורת מימן.png|400px|מרכז|ממוזער|איור 3 - ספקטרומטר (מימין) ומנורת מימן (משמאל)]] | |||
בניסוי שלנו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ. נשתמש בשפופרת תיראטרון (thyratron)- טריאודה ממולאת גז עם קתודה מחוממת הפולטת אלקטרונים. בין האנודה לקטודה ישנו שריג (grid) שצורתו המחוררת מאפשרת מעבר אלקטרונים דרכו. מתח מאיץ מופעל בין השריג לבין הקתודה של התיראטרון ושולט על תנועת האלקטרונים (ראו איור 2). | |||
[[קובץ:תיראטרון.png|150px|מרכז|ממוזער|איור 3 - מבנה התיראטרון. העיגול השחור מיצג המצאות גז בשפופרת]] | |||
במערכת זו מפעילים מתח שלילי על האנודה (אלקטרודה המשמשת כקולט), כך שאלקטרונים אינם יכולים להגיע אליו. בישומים רגילים של תיראטרון האנודה מוחזקת בפוטנציאל חיובי על מנת לקלוט את האלקטרונים. | |||
הזרם במעגל הקולט נוצר כאשר מתבצע עירור באטומי הגז שבשפופרת באופן הבא: | |||
האלקטרונים אשר נפלטים מהקתודה המחוממת ומואצים לעבר השריג (בשל הפוטנציאל החיובי) מתנגשים עם אטומי הגז שבשפופרת. בשלב הראשוני ההתנגשויות הינם אלסטיות כך שהאלקטרונים כמעט ולא מאבדים מהאנרגיה שלהם וממשיכים לעבר השריג. גם האלקטרונים המצליחים לעבור את השריג חוזרים בחזרה אליו בשל הפוטנציאל השלילי של הקולט. כאשר האנרגיה הקינטית של האלקטרונים (בשל הגדלת הפוטנציאל), שווה לרמת האנרגיה של אטומי הגז מתבצע עירור של האטומים. האלקטרונים מוסרים את האנרגיה שלהם לאטומים ובככך גורמים לאלקטרוני אטומי-הגז לעבור למסלול סטציונרי בעל אנרגיה גבוהה יותר. לאחר פרק זמן קצר מאוד, האלקטרונים חוזרים למצב בעל אנרגיה יותר נמוכה, ופולטים פוטונים. פוטונים אלו פוגעים בקולט וגורמים לאפקט הפוטו-אלקטרי. פוטונים משחררים אלקטרונים מהקולט (אנרגית הפוטונים גדולה פונקציית העבודה של הקולט). אלקטרונים אלה נעים מהקולט לעבר השריג וכך נוצר הזרם במעגל הקולט. | |||
הזרם במעגל הקולט נמדד בעזרת מכשיר בעל רגישות בסדר גודל של <math>10^{-10} A</math>. במערכת שלנו במעגל הקולט קיים נגד של <math>1 M \Omega</math>, כאשר מודדים עליו את מפל מתח עליו מבאמצעות מילי-וולטמטר בעל רגישות של <math>0.1mV</math>, סך כל הרגישות בזרם הנמדד תהיה <math>10^{-10} A</math>. | |||
פוטנציאל העירור של אטומי הגז בתיראטרון שווה למתח המאיץ שעבורו מופיע זרם במעגל של הקולט. את פוטנציאל היינון קובעים לפי עלייה חזקה בזרם השריג. עלייה זאת קשורה לנטרול של המטען האלקטרוני המרחבי ליד הקתודה על ידי היונים החיוביים שהופיעו. על מנת להגביל את זרם השריג, הוכנסה התנגדות למעגל. |
גרסה מ־10:05, 22 באוקטובר 2014
בשנת 1913 הציג נילס בוהר את מודל האטום שלו, לפיו בתוך האטום אלקטרונים נעים במספר בדיד של מסלולים, שבהם התנע הזוויתי של האלקטרונים הוא ביחידות שלמות של קבוע פלאנק. המודל הזה הסביר באופן יפה את ספקטרום הפליטה של אטום המימן, וההסבר האינטואיטיבי שעומד מאחוריו הוא שהאלקטרון מתנהג כמו גל, והמסלולים בהם הוא יכול לנוע דומים למצבים עצמיים של גלים.
בניסוי זה תוכלו לקבוע את רמות האנרגיה של אטום המימן לפי קווי ספקטרום הפליטה שלו ולמצוא את קבוע רידברג (Rydberg). חלקו שני של הניסוי הוא ביצוע גירסא של ניסוי פרנק-הרץ למציאת פוטנציאל עירור ופוטנציאל יינון של אטומי גז אציל.
רקע תיאורטי
מודל האטום של בוהר
עקב נפילתו של המודל הפלנטרי של רתרפורד, בשנת 1913 הציע נילס בוהר (N.Bohr), פיזיקאי דני צעיר שעבד במעבדתו של רתרפורד מודל מתוקן. הנחות בוהר הן עבור אטום המימן שהוא האטום הפשוט ביותר – בו יש אלקטרון אחד המסתובב מסביב לגרעין המכיל פרוטון בודד.
- אלקטרון יכול לנוע מסביב לגרעין רק במסלולים מעגליים מסויימים. כאשר האלקטרון נע באחד מהמסלולים הללו, אין הוא פולט קרינה אלקטרומגנטית למרות תנועתו המואצת. הנחה זו מנוגדת לחוקי הפיזיקה הקלאסית ובוהר קיבל אותה כאקסיומה.
התנאי למסלולים המותרים (נקראים גם סטציונריים) הוא: [math]\displaystyle{ mvr=n {h \over 2 \pi} }[/math] כאשר: [math]\displaystyle{ m }[/math]- מסת האלקטרון, [math]\displaystyle{ h }[/math]-קבוע פלנק ו- [math]\displaystyle{ n }[/math] מספר טבעי המאפיין את אינדקס המסלול.
- אלקטרון יכול לעבור ממסלול סטציונרי מסויים – בעל אינדקס [math]\displaystyle{ n }[/math] (בו האנרגיה גבוהה) למסלול סטציונרי אחר - בעל אינדקס [math]\displaystyle{ m }[/math] (בו האנרגיה נמוכה) ולהיפך ע"י פליטה או בליעה (בהתאמה) של פוטון בעל אנרגיה מתאימה:
[math]\displaystyle{ hf=|E_n-E_m| }[/math]
בהתבססו על הנחות יסוד אלה, חישב בוהר את רדיוסי המסלולים המותרים של אטום המימן, את אנרגיות המצבים היציבים ואורכי הגל של קווי ספקטרום הפליטה או ספקטרום הבליעה המתאימים למעבר של האטום ממצב יציב אחד לאחר.
לפי החוק השני של ניוטון, לחלקיק בתנועה מעגלית יש תאוצה צנטריפטלית שכיוונה כלפי מרכז המעגל. לכן על החלקיק פועל כח צנטריפטלי שכיוונו למרכז וגדלו [math]\displaystyle{ F={mv^2 \over r} }[/math] , הכח המאלץ את האלקטרון לנוע במעגל סביב הגרעין הוא הכח החשמלי המושך אותו אל הגרעין. מהשוואת שני כוחות אלו נקבל את רדיוס המסלול:
[math]\displaystyle{ r={e^2 \over {4 \pi \epsilon_0 m v^2}} }[/math]
כאשר [math]\displaystyle{ \epsilon_0=8.85*10^{-12} Fm^{-1} }[/math] הוא הקבוע הדיאלקטרי של החלל החופשי.
הצבת ערכה של [math]\displaystyle{ v }[/math] ממשוואת התנאי למסלולים סטציונריים נותנת ערך בדיד לרדיוסים:
[math]\displaystyle{ r_n=({{\epsilon_0 h^2} \over {\pi me^2}})n^2 }[/math]
האנרגיה של האלקטרון בכל אחד מהמצבים הסטציונריים מורכבת מהאנרגיה הקינטית ומהאנרגיה הפוטנציאלית של האלקטרון והגרעין כלומר:
[math]\displaystyle{ E_T=E_p+E_k=-{e^2 \over {4 \pi \epsilon_0 r}}+{{mv^2} \over 2} }[/math]
נקבל לאחר הצבת הרדיוס ואלגברה פשוטה כי מסלולי האנרגיה מקוונטטים ושווים:
[math]\displaystyle{ E_n=-{{e^4m} \over {8 \pi \epsilon_0 r}}=-{{hcR} \over n^2} }[/math]
כאשר [math]\displaystyle{ R={{e^4m} \over {8 \epsilon_0 ^2 h^3c}} }[/math] קבוע רידברג (Rydberg)
מתוך ביטוי זה ניתן לשרטט את רמות האנרגיה של אטום המימן (ראו איור 1).
הקווים הספקטרליים של אטומי המימן יוצרים מספר סדרות המתאימות למעברים של האטום מרמת אנרגיה גבוהה (n) לנמוכות יותר (m). סדרות אלו קיבלו שמות של המדענים: Lyman, Balmer, , Paschen, Brackett, Pfund.
בעבודה זו נשתמש בסדרת Balmer כי בסדרה זו קוי הספקטרום המתקבלים הם בתחום הנראה. מודל בוהר נותן במדוייק את הקווים הספקטרליים של אטום המימן או דמוי מימן – שבקליפתו החיצונית אלקטרון אחד בלבד, אך נכשל במקרים אחרים. לתיאור אטומים בעלי מספר אלקטרונים, יש להשתמש בתיאור הקוונטי המלא של האטום – לפי משוואת שרדינגר.
ניסוי פרנק-הרץ (Franck–Hertz)
במעבדה זו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ (James Franck – Gustav Hertz), אשר הפכו לאחת ההוכחות הניסיוניות הראשונות למודל בוהר המהווה יסוד לפיסיקה הקוונטית. פרס נובל לפיסיקה הוענק לגוסטב הרץ וג'יימס פרנק עבור ניסויים אלה ב-1925.
פוטנציאלים של עירור (excitation) ויינון (ionization)
בליעת אנרגיה ע"י אטום ומעבר האטום למצב סטציונרי בעל אנרגיה גדולה יותר נקרא עירור. אנרגית העירור מבוטאת בדרך כלל ביחידות אלקטרון-וולט (eV). על מנת לקבוע את המצבים הסטציונריים ניתן להשתמש בהפצצת אטומים באלקטרונים. כאשר האנרגיה של אלקטרונים נמוכה, ההתנגשויות עם האטומים הן אלסטיות. כתוצאה מהבדל גדול במסות של האלקטרונים והאטומים, האלקטרונים מעבירים לאטומים רק חלק קטן מהאנרגיה שלהם. אולם כשהאנרגיה מגיעה לערך מסוים ההתנגשויות כבר אינן אלסטיות: אלקטרונים מוסרים לאטומים את כל האנרגיה שלהם, והאטומים עוברים למצב בעל אנרגיה גדולה יותר. ניסוים אלה מוכיחים את קיומם של מצבים סטציונריים באטום ומאפשרים למדוד את האנרגיות שלהם. אם אנרגית האלקטרונים מספיק גדולה, מתרחש יינון האטום - בריחת אלקטרון אחד מאטום והפיכת האטום ליון.
מערכת הניסוי
ספקרטום הפליטה של מימן
המערכת מורכבת ממנורת מימן הפועלת תחת מתח של [math]\displaystyle{ 5000V }[/math]. אטומי המימן מעוררים ופולטים קרינת אור נראה. כדי למצוא את אורכי הגל של האור הנפלט נשתמש בספקטרוסקופ, ראו איור 2. בספקטרומטר, האור הנפלט מהמימן החם עובר דרך שריג עקיפה ויוצר תמונת התאבכות. בתמונה זו מופרדים הגלים לפי אורך הגל שלהם, ועל ידי כיול ניתן לראות את סדרת אורכי הגל של הקרינה הנפלטת.
בניסוי שלנו נחזור על אחת הגרסאות של ניסוי פרנק-הרץ. נשתמש בשפופרת תיראטרון (thyratron)- טריאודה ממולאת גז עם קתודה מחוממת הפולטת אלקטרונים. בין האנודה לקטודה ישנו שריג (grid) שצורתו המחוררת מאפשרת מעבר אלקטרונים דרכו. מתח מאיץ מופעל בין השריג לבין הקתודה של התיראטרון ושולט על תנועת האלקטרונים (ראו איור 2).
במערכת זו מפעילים מתח שלילי על האנודה (אלקטרודה המשמשת כקולט), כך שאלקטרונים אינם יכולים להגיע אליו. בישומים רגילים של תיראטרון האנודה מוחזקת בפוטנציאל חיובי על מנת לקלוט את האלקטרונים.
הזרם במעגל הקולט נוצר כאשר מתבצע עירור באטומי הגז שבשפופרת באופן הבא: האלקטרונים אשר נפלטים מהקתודה המחוממת ומואצים לעבר השריג (בשל הפוטנציאל החיובי) מתנגשים עם אטומי הגז שבשפופרת. בשלב הראשוני ההתנגשויות הינם אלסטיות כך שהאלקטרונים כמעט ולא מאבדים מהאנרגיה שלהם וממשיכים לעבר השריג. גם האלקטרונים המצליחים לעבור את השריג חוזרים בחזרה אליו בשל הפוטנציאל השלילי של הקולט. כאשר האנרגיה הקינטית של האלקטרונים (בשל הגדלת הפוטנציאל), שווה לרמת האנרגיה של אטומי הגז מתבצע עירור של האטומים. האלקטרונים מוסרים את האנרגיה שלהם לאטומים ובככך גורמים לאלקטרוני אטומי-הגז לעבור למסלול סטציונרי בעל אנרגיה גבוהה יותר. לאחר פרק זמן קצר מאוד, האלקטרונים חוזרים למצב בעל אנרגיה יותר נמוכה, ופולטים פוטונים. פוטונים אלו פוגעים בקולט וגורמים לאפקט הפוטו-אלקטרי. פוטונים משחררים אלקטרונים מהקולט (אנרגית הפוטונים גדולה פונקציית העבודה של הקולט). אלקטרונים אלה נעים מהקולט לעבר השריג וכך נוצר הזרם במעגל הקולט.
הזרם במעגל הקולט נמדד בעזרת מכשיר בעל רגישות בסדר גודל של [math]\displaystyle{ 10^{-10} A }[/math]. במערכת שלנו במעגל הקולט קיים נגד של [math]\displaystyle{ 1 M \Omega }[/math], כאשר מודדים עליו את מפל מתח עליו מבאמצעות מילי-וולטמטר בעל רגישות של [math]\displaystyle{ 0.1mV }[/math], סך כל הרגישות בזרם הנמדד תהיה [math]\displaystyle{ 10^{-10} A }[/math].
פוטנציאל העירור של אטומי הגז בתיראטרון שווה למתח המאיץ שעבורו מופיע זרם במעגל של הקולט. את פוטנציאל היינון קובעים לפי עלייה חזקה בזרם השריג. עלייה זאת קשורה לנטרול של המטען האלקטרוני המרחבי ליד הקתודה על ידי היונים החיוביים שהופיעו. על מנת להגביל את זרם השריג, הוכנסה התנגדות למעגל.