קוד:סדרות חסומות
\begin{definition} סדרה $ \{a_n \}_{n=1}^\infty $ נקראת חסומה אם קבוצת איברי הסדרה חסומה (ראינו את ההגדרה של קבוצה חסומה). \end{definition}
\begin{example} הסדרה הזאת לא חסומה:
$ 0,1,0,2,0,3,0,4,0,5,0,6,0,7,\cdots $
משום שלא חסומה מלעיל. \end{example}
\begin{thm} כל סדרה מתכנסת היא חסומה \end{thm}
\begin{proof} נניח שהסדרה מתכנסת ל- $ L $, ולכן לכל אפסילון קיים $ N $ כך ש-\\ $ \forall n>N : |a_n-L|<\varepsilon $. בפרט, עבור $ \varepsilon=1 $. נגדיר $$ M=\max\{|a_1|,|a_2|,\cdots,|a_N|,|L+1|\} $$ ונראה ש- $\forall n : |a_n|\leq M $ משום שאם $ n\leq N $ אז האיבר $ |a_n| $ נמצא בקבוצה ש-$ M $ הוא המקסימום שלה, ואם $ n>N $ אז גם ככה $ |a_n-L|<1 $ ולכן $ |a_n|<|L|+1\leq M $ . \end{proof}
\begin{remark} המשפט ההפוך לא נכון. לדוגמה הסדרה $ a_n=(-1)^n $ חסומה מלעיל ע"י 1 ומלרע ע"י $ -1 $ אבל לא מתכנסת \end{remark}