קוד:גבולות חד צדדיים

מתוך Math-Wiki
גרסה מ־20:15, 4 באוקטובר 2014 מאת ארז שיינר (שיחה | תרומות) (3 גרסאות יובאו)

(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)
קפיצה אל: ניווט, חיפוש

לפעמים הפונקציה מתנהגת בצורה שונה לגמרי מכל צד ולכן נוח להגדיר גבולות חד צדדיים. הרעיון בהגדרה שלהם היא כמו הגדרת הגבול אבל להגביל את הטווח שבו אנו מסתכלים על הסביבה של $a$ לסביבה ימנית או שמאלית.

\begin{definition} אומרים ש- $\lim_{x\to a^+} f(x) = L$ אם מתקיימים 2 דברים שקולים (לפי קושי או לפי היינה):

1. $\forall \varepsilon>0 \exists \delta \forall x: 0<x-a<\delta \Rightarrow |f(x)-L|<\varepsilon $

2. $\forall \{x_n\}_{n=1}^\infty : (x_n>a \land x_n\to a )\Rightarrow f(x_n)\to L

באופן אנלוגי, אומרים ש- $\lim_{x\to a^-} f(x) = L$ אם מתקיימים 2 דברים שקולים (לפי קושי או לפי היינה):

1. $\forall \varepsilon>0 \exists \delta \forall x: 0<a-x<\delta \Rightarrow |f(x)-L|<\varepsilon $

2. $\forall \{x_n\}_{n=1}^\infty : (x_n<a \land x_n\to a )\Rightarrow f(x_n)\to L

\end{definition}

לדוגמה, אם נסתכל על פונקציית הסימן $\operatorname{sign}(x)=\begin{cases} 1\ \text{if}\ x>0 \\ 0\ \text{if}\ x=0 \\ -1\ \text{if}\ x<0 \end{cases} $ אז מתקיים ש-

$\lim_{x\to 0^+} f(x)=1 , \lim_{x\to 0^-} f(x) =-1 $.

\begin{theorem} הגבול $\lim_{x\to a} f(x)$ קיים ושווה ל-$L$ אם ורק אם הגבולות החד צדדיים קיימים וגם שווים ל-$L$. \end{theorem}

\begin{proof} \boxed{\Leftarrow}

יהי $\varepsilon>0 $ אזי קיים $\delta>0 $ כך ש- $\forall x : 0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon $ אבל זה בדיוק כמו להגיד ש- $\forall x : 0<x-a<\delta \lor 0<a-x<\delta \Rightarrow |f(x)-L|<\varepsilon $ ואז מתקיימים הגדרות הגבולות החד צדדיים.

\boxed{\Rightarrow}

יהי $\varepsilon>0 $ אזי קיים $\delta_1>0 $ כך ש- $\forall x : 0<x-a<\delta_1 \Rightarrow |f(x)-L|<\varepsilon $ וקיים $\delta_2>0 $ כך ש- $\forall x : 0<a-x<\delta_2 \Rightarrow |f(x)-L|<\varepsilon $ ואז אם נגדיר $\delta=\min\{\delta_1,\delta_2\} $ נקבל ש- $ 0<|x-a|<\delta \Rightarrow 0<x-a<\delta \lor 0<a-x<\delta $ ובכל מקרה במקרה הזה יתקיים ש- $|f(x)-L|<\varepsilon $, כדרוש.

\end{proof}