הבדלים בין גרסאות בדף "אנליזה מתקדמת למורים תרגול 1"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
שורה 1: שורה 1:
 +
==הגדרה==
 +
 
כידוע אין שורש ממשי למספר <math>-1</math>. כלומר <math>\sqrt{-1}\notin \mathbb{R}</math>.
 
כידוע אין שורש ממשי למספר <math>-1</math>. כלומר <math>\sqrt{-1}\notin \mathbb{R}</math>.
  
שורה 17: שורה 19:
 
כפל: <math>(a+bi)\cdot (x+yi):=(ax-by)+(ay+bx)i</math>.
 
כפל: <math>(a+bi)\cdot (x+yi):=(ax-by)+(ay+bx)i</math>.
  
לדוגמא: נסמן <math>z=5+\frac{1}{3}i,w=2+\frac{2}{3}i</math>. נקבל <math>z+w=(5+2)+(\frac{1}{3}+\frac{2}{3})i=7+i</math>, וכן <math>z\cdot w=(5\cdot 2-\frac{1}{3\cdot \frac{2}{3})+(5\cdot \frac{2}{3}+\frac{1}{3}\cdot 2)i=9\frac{2}{9}+4i</math>.
+
לדוגמא: נסמן <math>z=5+\frac{1}{3}i,w=2+\frac{2}{3}i</math>. נקבל <math>z+w=(5+2)+(\frac{1}{3}+\frac{2}{3})i=7+i</math>, וכן
 +
<math>z\cdot w=(5\cdot 2-\frac{1}{3}\cdot \frac{2}{3})+(5\cdot \frac{2}{3}+\frac{1}{3}\cdot 2)i=9\frac{2}{9}+4i</math>.

גרסה מ־13:23, 8 באוקטובר 2018

הגדרה

כידוע אין שורש ממשי למספר -1. כלומר \sqrt{-1}\notin \mathbb{R}.

בתחילת הקורס נלמד על מבנה מתמטי בו יש שורש ל -1: שדה המספרים המרוכבים!

אז מי הם בעצם המספרים המרוכבים? בעצם מה שאנחנו צריכים להגדיר כאן זה שלושה דברים:

1. האיברים עצמם - המספרים המרוכבים.

2. איך לחבר ביניהם.

3. איך להכפיל ביניהם.

נסמן ב i איבר מסויים, ונגדיר i\cdot i=-1. במילים אחרות i=\sqrt{-1}. המספרים המרוכבים הם כל המספרים מהצורה a+bi כאשר a,b\in \mathbb{R}. כלומר, \mathbb{C}=\{a+bi|a,b\in \mathbb{R}\}. שימו לב שכמובן שהמספרים הממשיים מוכלים במרוכבים, פשוט לוקחים b=0.

חיבור: (a+bi)+(x+yi):=(a+x)+(b+y)i.

כפל: (a+bi)\cdot (x+yi):=(ax-by)+(ay+bx)i.

לדוגמא: נסמן z=5+\frac{1}{3}i,w=2+\frac{2}{3}i. נקבל z+w=(5+2)+(\frac{1}{3}+\frac{2}{3})i=7+i, וכן z\cdot w=(5\cdot 2-\frac{1}{3}\cdot \frac{2}{3})+(5\cdot \frac{2}{3}+\frac{1}{3}\cdot 2)i=9\frac{2}{9}+4i.