הבדלים בין גרסאות בדף "חדוא 1 - ארז שיינר"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(חסמים)
(פרק 2 - סדרות)
שורה 59: שורה 59:
  
 
==פרק 2 - סדרות==
 
==פרק 2 - סדרות==
 +
 +
*הגדרת הגבול של סדרה:
 +
*תהי סדרה ממשית <math>a_n</math> ויהי מספר ממשי <math>L\in\mathbb{R}</math>.
 +
*<math>L</math> הינו גבול הסדרה <math>a_n</math> (מסומן <math>\lim a_n=L</math> או <math>a_n\to L</math>) אם:
 +
**לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
 +
**לכל מרחק <math>\varepsilon>0</math> קיים מקום <math>N\in\mathbb{N}</math> כך שאחריו לכל <math>n>N</math> מתקיים כי <math>|a_n-L|<\varepsilon</math>
 +
 +
 
<videoflash>mMVBYUDmSA0</videoflash>
 
<videoflash>mMVBYUDmSA0</videoflash>
 +
 +
 +
*נגדיר ש<math>a_n\to\infty</math> אם לכל <math>M>0</math> קיים <math>N\in\mathbb{N}</math> כך שלכל <math>n>N</math> מתקיים כי <math>a_n>M</math>
 +
*נגדיר ש<math>a_n\to -\infty</math> אם <math>-a_n\to\infty</math>
 +
 +
 +
*טענה: תהי <math>a_n\to \infty</math> אזי <math>\frac{1}{a_n}\to 0</math>
 +
*טענה: תהי <math>0\neq a_n\to 0</math> אזי <math>\frac{1}{|a_n|}\to\infty</math>
 +
  
 
<videoflash>U5RUHjrHVGI</videoflash>
 
<videoflash>U5RUHjrHVGI</videoflash>

גרסה מ־12:41, 15 באוקטובר 2020

88-132 חשבון אינפיניטיסימלי 1

מבחנים ופתרונות

סרטוני ותקציר ההרצאות

פרק 1 - מספרים וחסמים

קבוצות מספרים

  • הטבעיים \mathbb{N}=\{1,2,3,...\}
  • השלמים \mathbb{Z}=\{0,-1,1,-2,2,...\}
  • הרציונאליים \mathbb{Q}=\left\{\frac{p}{n}|p\in\mathbb{Z},n\in\mathbb{N}\right\}
  • הממשיים \mathbb{R}, כל השברים העשרוניים כולל האינסופיים




  • לא קיים x\in\mathbb{Q} כך ש x^2=2.
  • במילים פשוטות, \sqrt{2} אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).

חסמים

  • תהי A\subseteq \mathbb{R} אזי:
    • M\in\mathbb{A} נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל a\in A מתקיים כי a\leq M
    • M\in\mathbb{R} נקרא חסם מלעיל של A אם לכל a\in A מתקיים כי a\leq M
    • m\in\mathbb{A} נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל a\in A מתקיים כי a\geq M
    • m\in\mathbb{R} נקרא חסם מלרע של A אם לכל a\in A מתקיים כי a\geq M


  • כמו כן:
    • אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן \sup(A)
    • אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן \inf(A)



  • בשדה הממשיים לכל קבוצה לא ריקה וחסומה מלעיל יש חסם עליון, ולכל קבוצה לא ריקה וחסומה מלרע יש חסם תחתון.
  • בשדה הרציונאליים זה לא נכון; לקבוצה A=\{x\in\mathbb{Q}|x^2<2\} אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.



  • תהי A\subseteq \mathbb{R} ויהי M\in\mathbb{R} אזי:
    • M הוא החסם העליון של A אם ורק אם M הוא חסם מלעיל של A ולכל מספר M-\varepsilon<M קיים מספר a\in A כך ש a>M-\varepsilon
    • m הוא החסם התחתון של A אם ורק אם m הוא חסם מלרע של A ולכל מספר m<m+\varepsilon קיים מספר a\in A כך ש a<m+\varepsilon


פרק 2 - סדרות

  • הגדרת הגבול של סדרה:
  • תהי סדרה ממשית a_n ויהי מספר ממשי L\in\mathbb{R}.
  • L הינו גבול הסדרה a_n (מסומן \lim a_n=L או a_n\to L) אם:
    • לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
    • לכל מרחק \varepsilon>0 קיים מקום N\in\mathbb{N} כך שאחריו לכל n>N מתקיים כי |a_n-L|<\varepsilon



  • נגדיר שa_n\to\infty אם לכל M>0 קיים N\in\mathbb{N} כך שלכל n>N מתקיים כי a_n>M
  • נגדיר שa_n\to -\infty אם -a_n\to\infty


  • טענה: תהי a_n\to \infty אזי \frac{1}{a_n}\to 0
  • טענה: תהי 0\neq a_n\to 0 אזי \frac{1}{|a_n|}\to\infty


פרק 3 - טורים

פרק 4 - פונקציות ורציפות

פרק 5 - גזירות

פרק 6 - חקירה