הבדלים בין גרסאות בדף "חדוא 1 - ארז שיינר"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(פרק 2 - סדרות)
(חשבון גבולות (אריתמטיקה של גבולות))
שורה 138: שורה 138:
 
*המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
 
*המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
 
**<math>\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty</math>
 
**<math>\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty</math>
 +
 +
 +
===סדרות מונוטוניות והמספר e===
 +
*סדרה מונוטונית וחסומה מתכנסת.
 +
*[[המספר e]] (הוכחות בעזרת [[אי-שוויון הממוצעים]]).
 +
*<math>2<e<4</math>.
 +
*אם <math>a_n\to\infty</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>
 +
**<math>[a_n]\leq a_n \leq [a_n]+1</math>, כאשר <math>[a_n]</math> הוא המספר השלם הגדול ביותר שקטן או שווה ל<math>a_n</math>.
 +
**<math>\left(1+\frac{1}{[a_n]+1}\right)^{[a_n]}\leq\left(1+\frac{1}{a_n}\right)^{a_n}\leq \left(1+\frac{1}{[a_n]}\right)^{[a_n]+1}</math>
 +
**שני הצדדים שואפים לe ולכן לפי כלל הסנדוויץ הסדרה אכן שואפת לe.
 +
*אם <math>a_n\to -\infty</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>
 +
**ראשית <math>\left(1-\frac{1}{n}\right)^{n}\to \frac{1}{e}</math> (הוכחה בקישור לערך על המספר e).
 +
**כעת חזקה שלילית הופכת את השבר, וניתן לסיים את ההוכחה באופן דומה להוכחה במקרה הקודם.
 +
 +
 +
*אם <math>a_n\to 1</math> אזי <math>a_n^{b_n}\to e^{\lim b_n\cdot(a_n-1)}</math>
 +
**<math>a_n^{b_n}=\left[\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\right]^{ b_n\cdot (a_n-1)}</math>.
 +
**<math>\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\to e</math> בין אם <math>a_n-1</math> שלילי או חיובי, לפי הטענות לעיל.
 +
**שימו לב שאם <math>a_n=1</math>, אז ממילא מקבלים 1 בנוסחא הסופית, ואז לא צריך לחלק ב<math>a_n-1</math> ששווה אפס.
 +
 +
 +
*דוגמא:
 +
**<math>\lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3</math>
  
 
==פרק 3 - טורים==
 
==פרק 3 - טורים==

גרסה מ־08:34, 16 באוקטובר 2020

88-132 חשבון אינפיניטיסימלי 1

מבחנים ופתרונות

סרטוני ותקציר ההרצאות

פרק 1 - מספרים וחסמים

קבוצות מספרים

  • הטבעיים \mathbb{N}=\{1,2,3,...\}
  • השלמים \mathbb{Z}=\{0,-1,1,-2,2,...\}
  • הרציונאליים \mathbb{Q}=\left\{\frac{p}{n}|p\in\mathbb{Z},n\in\mathbb{N}\right\}
  • הממשיים \mathbb{R}, כל השברים העשרוניים כולל האינסופיים




  • לא קיים x\in\mathbb{Q} כך ש x^2=2.
  • במילים פשוטות, \sqrt{2} אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).


חסמים

  • תהי A\subseteq \mathbb{R} אזי:
    • M\in\mathbb{A} נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל a\in A מתקיים כי a\leq M
    • M\in\mathbb{R} נקרא חסם מלעיל של A אם לכל a\in A מתקיים כי a\leq M
    • m\in\mathbb{A} נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל a\in A מתקיים כי a\geq M
    • m\in\mathbb{R} נקרא חסם מלרע של A אם לכל a\in A מתקיים כי a\geq M


  • כמו כן:
    • אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן \sup(A)
    • אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן \inf(A)



  • בשדה הממשיים לכל קבוצה לא ריקה וחסומה מלעיל יש חסם עליון, ולכל קבוצה לא ריקה וחסומה מלרע יש חסם תחתון.
  • בשדה הרציונאליים זה לא נכון; לקבוצה A=\{x\in\mathbb{Q}|x^2<2\} אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.



  • תהי A\subseteq \mathbb{R} ויהי M\in\mathbb{R} אזי:
    • M הוא החסם העליון של A אם ורק אם M הוא חסם מלעיל של A ולכל מספר M-\varepsilon<M קיים מספר a\in A כך ש a>M-\varepsilon
    • m הוא החסם התחתון של A אם ורק אם m הוא חסם מלרע של A ולכל מספר m<m+\varepsilon קיים מספר a\in A כך ש a<m+\varepsilon


  • דוגמא: תהיינה \emptyset\neq A,B\subseteq\mathbb{R} חסומות מלעיל כך שA אינה מכילה חסמי מלעיל של B, אזי \sup(A)\leq\sup(B)


פרק 2 - סדרות

הגדרת הגבול

  • הגדרת הגבול של סדרה:
  • תהי סדרה ממשית a_n ויהי מספר ממשי L\in\mathbb{R}.
  • L הינו גבול הסדרה a_n (מסומן \lim a_n=L או a_n\to L) אם:
    • לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
    • לכל מרחק \varepsilon>0 קיים מקום N\in\mathbb{N} כך שאחריו לכל n>N מתקיים כי |a_n-L|<\varepsilon



  • נגדיר שa_n\to\infty אם לכל M>0 קיים N\in\mathbb{N} כך שלכל n>N מתקיים כי a_n>M
  • נגדיר שa_n\to -\infty אם -a_n\to\infty


  • טענה: תהי a_n\to \infty אזי \frac{1}{a_n}\to 0
  • טענה: תהי 0\neq a_n\to 0 אזי \frac{1}{|a_n|}\to\infty



  • הגבול הוא יחיד
  • מספר סופי של איברים לא משפיע על הגבול
  • סדרה מתכנסת במובן הצר חסומה


מבוא לחשבון גבולות (אריתמטיקה של גבולות)

    • (אי שיוויון המשולש.)
    • סכום.
    • מכפלה.
    • חלוקה.

כלים לחישוב גבולות

  • סנדביץ' וחצי סדנביץ'
  • a_n\to 0 \iff |a_n|\to 0
  • חסומה כפול אפיסה היא אפיסה.
  • מבחן המנה (הוכחה בסיכום הבא על אי-שוויון הממוצעים).
    • תהי סדרה a_n המקיימת כי גבול המנה הוא \left|\frac{a_{n+1}}{a_n}\right|\to L אזי:
      • אם 1<L\leq\infty מתקיים כי |a_n|\to\infty
      • אם 0\leq L<1 מתקיים כי a_n\to 0
      • מתקיים כי \sqrt[n]{|a_n|}\to L


  • דוגמא:
    • \sqrt[n]{n}\to 1


  • אינדוקציה.
  • ברנולי - אקספוננט חיובי שואף לאפס, אחד או אינסוף.


חשבון גבולות (אריתמטיקה של גבולות)

  • אריתמטיקה מורחבת (הכתיב הוא מקוצר ואינו מדוייק):
    • חסומה כפול אפיסה = אפיסה
    • חסומה חלקי אינסוף = אפיסה
    • \infty+\infty=\infty
    • \infty\cdot\infty=\infty
    • \infty^\infty=\infty
    • \frac{1}{0}\neq\infty
    • \frac{1}{0^+}=\infty
    • 0^\infty = 0
    • אינסוף כפול סדרה השואפת למספר חיובי = אינסוף.
    • אינסוף כפול סדרההשואפת למספר שלילי = אינסוף.
    • יש גבול סופי + אין גבול סופי = אין גבול סופי.
    • אינסוף ועוד חסומה שווה אינסוף.
    • אם a>1 אזי a^\infty=\infty
    • חזקת סדרות שואפת לחזקת הגבולות.

המקרים הבעייתיים

  • המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
    • \frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty


סדרות מונוטוניות והמספר e

  • סדרה מונוטונית וחסומה מתכנסת.
  • המספר e (הוכחות בעזרת אי-שוויון הממוצעים).
  • 2<e<4.
  • אם a_n\to\infty אזי \left(1+\frac{1}{a_n}\right)^{a_n}\to e
    • [a_n]\leq a_n \leq [a_n]+1, כאשר [a_n] הוא המספר השלם הגדול ביותר שקטן או שווה לa_n.
    • \left(1+\frac{1}{[a_n]+1}\right)^{[a_n]}\leq\left(1+\frac{1}{a_n}\right)^{a_n}\leq \left(1+\frac{1}{[a_n]}\right)^{[a_n]+1}
    • שני הצדדים שואפים לe ולכן לפי כלל הסנדוויץ הסדרה אכן שואפת לe.
  • אם a_n\to -\infty אזי \left(1+\frac{1}{a_n}\right)^{a_n}\to e
    • ראשית \left(1-\frac{1}{n}\right)^{n}\to \frac{1}{e} (הוכחה בקישור לערך על המספר e).
    • כעת חזקה שלילית הופכת את השבר, וניתן לסיים את ההוכחה באופן דומה להוכחה במקרה הקודם.


  • אם a_n\to 1 אזי a_n^{b_n}\to e^{\lim b_n\cdot(a_n-1)}
    • a_n^{b_n}=\left[\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\right]^{ b_n\cdot (a_n-1)}.
    • \left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\to e בין אם a_n-1 שלילי או חיובי, לפי הטענות לעיל.
    • שימו לב שאם a_n=1, אז ממילא מקבלים 1 בנוסחא הסופית, ואז לא צריך לחלק בa_n-1 ששווה אפס.


  • דוגמא:
    • \lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3

פרק 3 - טורים

פרק 4 - פונקציות ורציפות

פרק 5 - גזירות

פרק 6 - חקירה