הבדלים בין גרסאות בדף "שיטות אינטגרציה"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(ההצבה הטריגונומטרית האוניברסלית)
מ (another way to express sin(x) as a result of the universal trigonometric substitution)
 
(12 גרסאות ביניים של 3 משתמשים אינן מוצגות)
שורה 1: שורה 1:
 
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.
 
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.
  
== אינטגרציה "רגילה" ==
+
==אינטגרציה מיידית==
 +
אינטגרל מיידי הוא אינטגרל על פונקציה שאנחנו יודעים מי הקדומה שלה.
  
הכוונה היא לבצע את האינטגרל לפי חוקי הגזירה. לדוגמה, <BR>
+
לדוגמא: <math>\int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C</math>
<math>\int \left(e^x+\frac{1}{x} \right )dx=e^x+\ln\left | x \right |+c</math>.
+
  
=== דף אינטגרלים ===
+
[[מדיה:אינטגרלים.pdf|דף אינטגרליים מיידיים]]
  
[[מדיה:אינטגרלים.pdf|ראה כאן]]
+
==אינטגרציה בחלקים==
 +
לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:
  
=== השלמה לריבוע ===
+
<math>\int f'g=f\cdot g-\int fg'</math> (ניתן לוודא על ידי גזירה).
  
כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה שנייה, ניתן להשלים את הפולינום לריבוע ולהיעזר ב-<math>\arctan</math>.
+
===דוגמא===
 +
<math>\int\ln(x)dx</math>
  
==== דוגמה ====
+
לפי השיטה, נסמן <math>f'(x)=1\ ,\ g(x)=\ln(x)</math> .
  
<math>\int\frac{1}{x^2+x+1\frac{1}{4}}dx</math>
+
לכן נקבל <math>f(x)=x\ ,\ g'(x)=\frac{1}{x}</math> .
  
ניעזר בהשלמה לריבוע של המכנה. נקבל:
+
לפי נוסחת אינטגרציה בחלקים, נקבל:
  
<math>\int\frac{1}{x^2+x+1\frac{1}{4}}dx=\int\frac{1}{\left (x+\frac{1}{2} \right )^2+1}dx=\arctan\left (x+\frac{1}{2} \right )+c</math>
+
<math>\int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C</math>
  
== אינטגרציה בחלקים ==
 
  
לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים: <BR>
+
[[אינטגרציה בחלקים|הרחבה]]
<math>\int{f'g}=fg-\int{fg'}</math> (ניתן לוודא על ידי גזירה).
+
  
=== דוגמה ===
+
==אינטגרציה בהצבה==
 +
לפי כלל השרשרת, אנו מקבלים:
  
נחפש את <math>\int \ln\ x \ dx</math>.
+
<math>\int f(g(x))\cdot g'(x)dx=F(g(x))+C</math> (ניתן לוודא על-ידי גזירה).
  
לפי השיטה, נסמן <math>f'\left (x \right )=1</math>, <math>g(x)=\ln\ x</math>.
+
===דוגמא===
 +
<math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx</math> כאשר <math>a>0</math> .
  
לכן נקבל <math>f(x)=x</math>, <math>g'(x)=\frac{1}{x}</math>.
+
נבצע הצבה<math>u=\sin^2(x)\</math> ולכן <math>du=2\sin(x)\cos(x)dx=\sin(2x)dx\</math>
  
לפי נוסחת אינטגרציה בחלקים, נקבל:
+
מקבלים:
  
<math>\int \ln\ x \ dx=x\cdot \ln\ x-\int x\cdot \frac{1}{x}\ dx=x\cdot \ln\ x-\int 1\ dx=x\cdot \ln\ x-x+c</math>.
+
<math>\int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C</math> (נזכור כי <math>a+u>0</math> , לכן אין צורך בערך מוחלט).
  
=== הרחבה ===
 
  
[[אינטגרציה בחלקים|הרחבה]]
+
[[שיטת ההצבה|הרחבה]]
  
== אינטגרציה בהצבה ==
+
==פונקציה רציונאלית==
 +
על מנת לחשב אינטגרל על פונקציה רציונאלית <math>f(x)=\frac{p(x)}{q(x)}</math> (כאשר <math>p(x),q(x)</math> פולינומים), עלינו לעקוב אחרי השלבים הבאים:
 +
*אם דרגת המונה גדולה מדרגת המכנה, נבצע חילוק פולינומים.
 +
*נבצע פירוק לשברים חלקיים.
 +
*נחשב את האינטגרל של כל שבר חלקי.
  
לפי כלל השרשרת, אנו מקבלים: <BR>
+
ניתן לקרוא [[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|כאן]] את האלגוריתם המלא.
<math>\int f\left (g\left(x \right ) \right )\cdot g'\left (x \right )\ dx=F\left (g\left(x \right ) \right )+c</math> (ניתן לוודא על ידי גזירה).
+
  
=== דוגמה ===
+
==הצבות אוניברסאליות==
 +
'''הצבות אוניברסאליות''' הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של [[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|פונקציה רציונאלית]] אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.
  
נחפש את <math>\int \frac{\sin\left(2x \right )}{a+\sin^2 x}dx</math> כאשר <math>a>0</math>.
+
הצבות אוניברסאליות ידועות ניתן למצוא בקובץ הבא: (עד אשר מישהו יקליד אותו אל תוך הויקי...)
  
נבצע הצבה: <math>du=2\cdot \sin\ x\cdot \cos\ x\ dx=\sin\left(2x \right )dx \ \Leftarrow u=\sin^2 x</math>. מקבלים:
+
*[[מדיה:09Infi2Universal.pdf|הסבר על הצבות אוניברסאליות]]
  
<math>\int \frac{\sin\left(2x \right )}{a+\sin^2 x}dx=\int \frac{1}{a+u}du=\ln\left ( a+u \right )+c=\ln(a+\sin^2 x)+c</math> (נזכור כי <math>a+u>0</math>, לכן אין צורך בערך מוחלט).
+
==ההצבה הטריגונומטרית האוניברסלית==
 +
בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב <math>u=\tan\left(\frac{x}{2}\right)</math> .
  
=== הרחבה ===
+
נזכור כי <math>1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)}</math> , ונקבל <math>\cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2}</math> .
  
[[שיטת ההצבה|הרחבה]]
+
נקבל בנוסף <math>\cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2}</math> .
 
+
== ההצבה הטריגונומטרית האוניברסלית ==
+
 
+
בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב <math>u=\tan\left (\frac{x}{2}\right )</math>.
+
 
+
נזכור כי <math>1+\tan^2\alpha=\frac{1}{\cos^2 \alpha}</math>, ונקבל <math>\cos^2 \left ( \frac{x}{2} \right )=\frac{1}{1+\tan^2\left ( \frac{x}{2} \right )}=\frac{1}{1+u^2}</math>.
+
 
+
נקבל בנוסף <math>\cos\ x=2\cdot \cos^2\left ( \frac{x}{2} \right )-1=2\cdot\frac{1}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2}</math>.
+
  
 
לכן:
 
לכן:
  
<math>\sin\ x=\sqrt{ 1-\cos^2 x }=\sqrt{1-\left (\frac{1-u^2}{1+u^2} \right )^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=</math>
+
<math>\sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=</math>
  
<math>\sqrt{\frac{1+2u^2+u^4-\left (1-2u^2+u^4 \right )}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{4u^2}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{\left ( 2u \right )^2}{\left ( 1+u^2 \right )^2}}=\frac{2u}{1+u^2}</math>
+
<math>\sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2}</math>
  
כמו כן, <math>x=2\cdot \arctan\ u</math>, ולכן <math>dx=\frac{2}{1+u^2} du</math>.
+
ובדרך אחרת:
  
=== דוגמה ===
+
<math>\tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}=\frac{2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2 \cos^2(\frac{x}{2})}=\frac{\sin(x)}{2 \cos^2(\frac{x}{2})}</math>
  
<math>\int\frac{1}{2+2\cdot \sin\ x}dx</math>
+
ולכן מתקיים
  
ניעזר בהצבה הטריגונומטרית האוניברסלית. נציב <math>u=\tan\left (\frac{x}{2}\right )</math>. נקבל:
+
<math>\sin(x)=\tan(\frac{x}{2})\cdot 2 \cos^2(\frac{x}{2})=\frac{2u}{1+u^2}</math>
  
<math>\int\frac{1}{2+2\cdot \sin\ x}dx=\int\frac{1}{2+2\cdot \frac{2u}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int\frac{1+u^2}{2+2u^2+4u}\cdot\frac{2}{1+u^2}du=</math>
 
  
<math>\int\frac{1}{u^2+2u+1}du=\int\frac{1}{\left (u+1\right )^2}du=-\frac{1}{u+1}+c=-\frac{1}{1+\tan\left (\frac{x}{2}\right )}+c</math>
+
כמו כן, <math>x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du</math> .
  
=== הרחבה ===
+
לסיכום,
 +
<math>u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du</math>
  
[[מדיה:09Infi2Universal.pdf|הרחבה]]
+
===דוגמא===
 +
<math>\int\frac{dx}{2+2\sin(x)}</math>
  
== פירוק לשברים חלקיים ==
+
נעזר בהצבה הטריגונומטרית האוניברסלית. נציב <math>u=\tan\left(\frac{x}{2}\right)</math> . נקבל:
  
כאשר נקבל פונקציה רציונאלית שבמונה שלה פולינום ממעלה נמוכה מאשר במכנה שלה, נרצה לפרק את השבר לשברים חלקיים אשר סכומם הוא השבר המקורי, וקל לבצע אינטגרל לכל אחד מהם בנפרד. ננסה לפרק אותו לגורמים לינאריים ולגורמים ממעלה שנייה.
+
<math>\int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du</math>
  
[[מדיה:שברים חלקיים.pdf|הסבר ודוגמה]]
+
<math>=\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C</math>
  
== הצבות אוילר ==
 
  
הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם <math>x</math> ו-<math>\sqrt{ax^2+bx+c}</math>.
+
[[מדיה:09Infi2Universal.pdf|הרחבה]]
  
=== אוילר 1 - הפולינום פריק ===
+
==הצבות אוילר==
 +
הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם <math>x</math> ו- <math>\sqrt{ax^2+bx+c}</math> .
  
נניח כי הפולינום <math>ax^2+bx+c</math> פריק (מעל הממשיים, כמובן). נסמן <math>ax^2+bx+c=a\left (x-\alpha\right )\left (x-\beta\right )</math>.
+
===אוילר 1 - הפולינום פריק===
 +
נניח כי הפולינום <math>ax^2+bx+c</math> פריק (מעל הממשיים, כמובן). נסמן <math>ax^2+bx+c=a(x-\alpha)(x-\beta)</math> .
  
הצבת אוילר: נציב <math>\sqrt{ax^2+bx+c}=u\cdot\left (x-\alpha\right )</math> (אפשר גם את השורש השני). נביע את <math>x</math> באמצעות <math>u</math>, ונוכל למצוא גם את <math>x</math> וגם את <math>\sqrt{ax^2+bx+c}</math>.
+
הצבת אוילר: נציב <math>\sqrt{ax^2+bx+c}=u(x-\alpha)</math> (אפשר גם את השורש השני). נביע את <math>x</math> באמצעות <math>u</math> , ונוכל למצוא גם את <math>x</math> וגם את <math>\sqrt{ax^2+bx+c}</math> .
  
==== דוגמה ====
+
====דוגמא====
 +
<math>\int\frac{dx}{x\sqrt{x^2-7x+6}}</math>
  
<math>\int\frac{1}{x\sqrt{x^2-7x+6}}dx</math>
 
  
ניעזר בהצבת אוילר: נציב <math>\sqrt{x^2-7x+6}=u\cdot\left (x-1\right )</math>. לכן <math>\left(x-1 \right )\left(x-6 \right )=u^2\left(x-1 \right )^2</math>, כלומר <math>x-6=u^2\left(x-1 \right )</math>, ומכאן <math>x=\frac{u^2-6}{u^2-1}</math>. לכן <math>dx=\frac{2u\left (u^2-1  \right )-2u\left (u^2-6  \right )}{\left (u^2-1  \right )^2}du=\frac{10u}{\left (1-u^2  \right )^2}du</math>. בנוסף, <math>\sqrt{x^2-7x+6}=u\cdot\left ( x-1 \right )=u\cdot\left ( \frac{u^2-6}{u^2-1}-1 \right )=-\frac{5u}{u^2-1}</math>
+
נעזר בהצבת אוילר: נציב <math>\sqrt{x^2-7x+6}=u(x-1)</math> .
  
מקבלים:
 
  
<math>\int\frac{1}{x\sqrt{x^2-7x+6}}dx=-\int\frac{1}{\ \frac{u^2-6}{u^2-1}\cdot \frac{5u}{u^2-1}\ }\cdot\frac{10u}{\left ( 1-u^2 \right )^2}du=-2\int \frac{1}{u^2-6}du</math> כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.
+
לכן <math>(x-1)(x-6)=u^2(x-1)^2</math> , כלומר <math>x-6=u^2(x-1)</math> , ומכאן <math>x=\frac{u^2-6}{u^2-1}</math> .
 
+
=== אוילר 2 - פולינום יותר כללי ===
+
 
+
ישנן שתי אפשרויות:
+
# בהינתן <math>a>0</math>, נציב <math>\sqrt{ax^2+bx+c}=\sqrt{a}\cdot x+u</math>.
+
# בהינתן <math>c>0</math>, נציב <math>\sqrt{ax^2+bx+c}=xu+\sqrt{c}</math>.
+
  
נביע את <math>x</math> באמצעות <math>u</math>, ונוכל למצוא את <math>dx</math> ואת <math>\sqrt{ax^2+bx+c}</math>.
 
  
==== דוגמה ====
+
לכן <math>dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du</math> .
  
<math>\int\frac{1}{\sqrt{x^2-7x+6}}dx</math>
 
  
ניעזר בהצבת אוילר (האופציה הראשונה): נציב <math>\sqrt{x^2-7x+6}=x+u</math>. נעלה בריבוע ונקבל <math>x^2-7x+6=x^2+2xu+u^2</math>, כלומר <math>x=\frac{6-u^2}{2u+7}</math>. לכן <math>dx=\frac{-2u\left (2u+7  \right )-2\left (6-u^2  \right )}{\left (2u+7  \right )^2}du=-2\cdot\frac{u^2+7u+6}{\left ( 2u+7 \right )^2}du</math>, וכן <math>\sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7}</math>.
+
בנוסף, <math>\sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1}</math>
  
 
מקבלים:
 
מקבלים:
  
<math>\int\frac{1}{\sqrt{x^2-7x+6}}dx=-\int\frac{1}{\ \frac{u^2+7u+6}{2u+7} \ }\cdot 2\cdot\frac{u^2+7u+6}{\left ( 2u+7 \right )^2}du=-\int\frac {2}{2u+7}du=-ln\left | 2u+7 \right |+c=-ln\left | \sqrt{x^2-7x+6}-x \right |+c</math>
+
<math>\int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6}</math> כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.
  
=== הרחבה ===
+
===אוילר 2 - פולינום יותר כללי===
 +
ישנן שתי אפשרויות:
 +
# בהינתן <math>a>0</math> , נציב <math>\sqrt{ax^2+bx+c}=\sqrt{a}x+u</math> .
 +
# בהינתן <math>c>0</math> , נציב <math>\sqrt{ax^2+bx+c}=xu+\sqrt c</math> .
  
[[מדיה:09Infi2Universal.pdf|הרחבה]]
+
נביע את <math>x</math> באמצעות <math>u</math> , ונוכל למצוא את <math>dx</math> ואת <math>\sqrt{ax^2+bx+c}</math> .
  
== פונקציה רציונאלית ==
+
====דוגמא====
 +
<math>\int\frac{dx}{\sqrt{x^2-7x+6}}</math>
  
קיימים מספר מצבים עבור פונקציות רציונאליות <math>f\left (x\right )=\frac{p(x)}{q(x)}</math> (כאשר <math>p(x),q(x)</math> פולינומים). להלן חמישה:
+
ניעזר בהצבת אוילר (האופציה הראשונה): נציב <math>\sqrt{x^2-7x+6}=x+u</math> .
  
=== מצב ראשון <math>\deg\ p=\deg\ q-1</math> ===
 
  
במצב כזה, <math>\deg\ q'=\deg\ p</math>, לכן קיים קבוע <math>c</math> שעבורו <math>h=cp-q'</math> יהיה ממעלה יותר נמוכה, כלומר <math>\deg\ h<\ \deg\ q-1</math>. נקבל:
+
נעלה בריבוע ונקבל <math>x^2-7x+6=x^2+2xu+u^2</math> , כלומר <math>x=\frac{6-u^2}{2u+7}</math> .
  
<math>\int f=\int\frac{p}{q}=\int\frac{\ \frac{h+q'}{c}\ }{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{1}{c}\cdot \ln|q|</math>. עוברים למצב הבא.
 
  
=== מצב שני <math>\deg\ p<\deg\ q-1</math> ===
+
לכן <math>dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du</math> ,
  
מפרקים לשברים חלקיים כפי שמוסבר בקובץ [[מדיה:שברים חלקיים.pdf|הזה]].
 
  
=== מצב שלישי <math>\deg\ p\ge \deg\ q</math> ===
+
וכן <math>\sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7}</math> .
  
מבצעים חילוק פולינומים וחוזרים למצבים הקודמים.
+
מקבלים:
  
=== הרחבה ===
+
<math>\int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C</math>
  
[[אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית|הרחבה]]
 
  
== סיכום ==
+
[[מדיה:09Infi2Universal.pdf|הרחבה]]
  
 +
==סיכום==
 
'''[[מדיה:אינטגרלים לא-מסוימים.pdf|דף מסכם]]'''
 
'''[[מדיה:אינטגרלים לא-מסוימים.pdf|דף מסכם]]'''

גרסה אחרונה מ־13:52, 15 במרץ 2019

בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.

אינטגרציה מיידית

אינטגרל מיידי הוא אינטגרל על פונקציה שאנחנו יודעים מי הקדומה שלה.

לדוגמא: \int\left(e^x+\frac{1}{x}\right)dx=e^x+\ln(|x|)+C

דף אינטגרליים מיידיים

אינטגרציה בחלקים

לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:

\int f'g=f\cdot g-\int fg' (ניתן לוודא על ידי גזירה).

דוגמא

\int\ln(x)dx

לפי השיטה, נסמן f'(x)=1\ ,\ g(x)=\ln(x) .

לכן נקבל f(x)=x\ ,\ g'(x)=\frac{1}{x} .

לפי נוסחת אינטגרציה בחלקים, נקבל:

\int\ln(x)dx=x\ln(x)-\int x\cdot\frac{1}{x}dx=x\ln(x)-\int 1\,dx=x\ln(x)-x+C


הרחבה

אינטגרציה בהצבה

לפי כלל השרשרת, אנו מקבלים:

\int f(g(x))\cdot g'(x)dx=F(g(x))+C (ניתן לוודא על-ידי גזירה).

דוגמא

\int\frac{\sin(2x)}{a+\sin^2(x)}dx כאשר a>0 .

נבצע הצבהעיבוד הנוסחה נכשל (שגיאת לקסינג): u=\sin^2(x)\

ולכן עיבוד הנוסחה נכשל (שגיאת לקסינג): du=2\sin(x)\cos(x)dx=\sin(2x)dx\


מקבלים:

\int\frac{\sin(2x)}{a+\sin^2(x)}dx=\int\frac{du}{a+u}=\ln(a+u)+C=\ln\big(a+\sin^2(x)\big)+C (נזכור כי a+u>0 , לכן אין צורך בערך מוחלט).


הרחבה

פונקציה רציונאלית

על מנת לחשב אינטגרל על פונקציה רציונאלית f(x)=\frac{p(x)}{q(x)} (כאשר p(x),q(x) פולינומים), עלינו לעקוב אחרי השלבים הבאים:

  • אם דרגת המונה גדולה מדרגת המכנה, נבצע חילוק פולינומים.
  • נבצע פירוק לשברים חלקיים.
  • נחשב את האינטגרל של כל שבר חלקי.

ניתן לקרוא כאן את האלגוריתם המלא.

הצבות אוניברסאליות

הצבות אוניברסאליות הוא כינוי כללי להצבות המעבירות פונקציות ממשפחה מסוימת לצורה של פונקציה רציונאלית אותה אנחנו יודעים לפתור. שימו לב שכיון ופתרון פונקציה רציונאלית דורש פירוק פולינומים, לעתים המעבר לפונקציה רציונאלית לא יקדם אותנו לקראת פתרון הבעיה.

הצבות אוניברסאליות ידועות ניתן למצוא בקובץ הבא: (עד אשר מישהו יקליד אותו אל תוך הויקי...)

ההצבה הטריגונומטרית האוניברסלית

בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב u=\tan\left(\frac{x}{2}\right) .

נזכור כי 1+\tan^2(\alpha)=\frac{1}{\cos^2(\alpha)} , ונקבל \cos^2\left(\frac{x}{2}\right)=\frac{1}{1+\tan^2\left(\frac{x}{2}\right)}=\frac{1}{1+u^2} .

נקבל בנוסף \cos(x)=2\cos^2\left(\frac{x}{2}\right)-1=\frac{2}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2} .

לכן:

\sin(x)=\sqrt{1-\cos^2(x)}=\sqrt{1-\left(\frac{1-u^2}{1+u^2}\right)^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=

\sqrt{\frac{1+2u^2+u^4-(1-2u^2+u^4)}{(1+u^2)^2}}=\sqrt{\frac{4u^2}{(1+u^2)^2}}=\sqrt{\frac{(2u)^2}{(1+u^2)^2}}=\frac{2u}{1+u^2}

ובדרך אחרת:

\tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}=\frac{2 \cdot \sin(\frac{x}{2}) \cdot \cos(\frac{x}{2})}{2 \cos^2(\frac{x}{2})}=\frac{\sin(x)}{2 \cos^2(\frac{x}{2})}

ולכן מתקיים

\sin(x)=\tan(\frac{x}{2})\cdot 2 \cos^2(\frac{x}{2})=\frac{2u}{1+u^2}


כמו כן, x=2\arctan(u)\ \Rightarrow\ dx=\frac{2}{1+u^2}du .

לסיכום,

u=\tan\left(\frac{x}{2}\right);\ \cos(x)=\frac{1-u^2}{1+u^2};\ \sin(x)=\frac{2u}{1+u^2};\ x=2\arctan(u);\ dx=\frac{2}{1+u^2}du

דוגמא

\int\frac{dx}{2+2\sin(x)}

נעזר בהצבה הטריגונומטרית האוניברסלית. נציב u=\tan\left(\frac{x}{2}\right) . נקבל:

\int\frac{dx}{2+2\sin(x)}=\frac{1}{2}\int\frac{1}{1+\frac{2u}{1+u^2}}\cdot\frac{2}{1+u^2}du=\frac{1}{2}\int\frac{1+u^2}{u^2+2u+1}\cdot\frac{2}{1+u^2}du

=\int\frac{du}{(u+1)^2}=-\frac{1}{u+1}+C=-\frac{1}{1+\tan\left(\frac{x}{2}\right)}+C


הרחבה

הצבות אוילר

הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם x ו- \sqrt{ax^2+bx+c} .

אוילר 1 - הפולינום פריק

נניח כי הפולינום ax^2+bx+c פריק (מעל הממשיים, כמובן). נסמן ax^2+bx+c=a(x-\alpha)(x-\beta) .

הצבת אוילר: נציב \sqrt{ax^2+bx+c}=u(x-\alpha) (אפשר גם את השורש השני). נביע את x באמצעות u , ונוכל למצוא גם את x וגם את \sqrt{ax^2+bx+c} .

דוגמא

\int\frac{dx}{x\sqrt{x^2-7x+6}}


נעזר בהצבת אוילר: נציב \sqrt{x^2-7x+6}=u(x-1) .


לכן (x-1)(x-6)=u^2(x-1)^2 , כלומר x-6=u^2(x-1) , ומכאן x=\frac{u^2-6}{u^2-1} .


לכן dx=\frac{2u(u^2-1)-2u(u^2-6)}{(u^2-1)^2}du=\frac{10u}{(1-u^2)^2}du .


בנוסף, \sqrt{x^2-7x+6}=u(x-1)=u\left(\frac{u^2-6}{u^2-1}-1\right)=-\frac{5u}{u^2-1}

מקבלים:

\int\frac{dx}{x\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2-6}{u^2-1}\cdot\frac{5u}{u^2-1}}\cdot\frac{10u}{(1-u^2)^2}du=-2\int\frac{du}{u^2-6} כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.

אוילר 2 - פולינום יותר כללי

ישנן שתי אפשרויות:

  1. בהינתן a>0 , נציב \sqrt{ax^2+bx+c}=\sqrt{a}x+u .
  2. בהינתן c>0 , נציב \sqrt{ax^2+bx+c}=xu+\sqrt c .

נביע את x באמצעות u , ונוכל למצוא את dx ואת \sqrt{ax^2+bx+c} .

דוגמא

\int\frac{dx}{\sqrt{x^2-7x+6}}

ניעזר בהצבת אוילר (האופציה הראשונה): נציב \sqrt{x^2-7x+6}=x+u .


נעלה בריבוע ונקבל x^2-7x+6=x^2+2xu+u^2 , כלומר x=\frac{6-u^2}{2u+7} .


לכן dx=\frac{-2u(2u+7)-2(6-u^2)}{(2u+7)^2}du=-2\cdot\frac{u^2+7u+6}{(2u+7)^2}du ,


וכן \sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7} .

מקבלים:

\int\frac{dx}{\sqrt{x^2-7x+6}}=-\int\frac{1}{\frac{u^2+7u+6}{2u+7}}\cdot2\cdot\frac{u^2+7u+6}{(2u+7)^2}du=-\int\frac{2}{2u+7}du=-\ln(|2u+7|)+C=-\ln\left(\left|\sqrt{x^2-7x+6}-x\right|\right)+C


הרחבה

סיכום

דף מסכם