88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/9

מתוך Math-Wiki
גרסה מ־14:47, 5 באוגוסט 2014 מאת אחיה בר-און (שיחה | תרומות) (מטריצות מייצגות)

קפיצה אל: ניווט, חיפוש

חזרה למערכי התרגול

מטריצות מייצגות

הגדרה. תהי T:V\rightarrow W העתקה לינארית, ויהיו E,F בסיסים לV,W בהתאמה. נסמן E=\{v_1,...,v_n\}. אזי המטריצה המייצגת את T מבסיס E לבסיס F הינה המטריצה שעמודותיה הן הקואורדינטות לפי הבסיס F של התמונות של איברי הבסיס E. מסמנים


[T]^E_F =\begin{pmatrix}

|        &    |     &      & | \\

\big[Tv_1]_F & [Tv_2]_F &\cdots &[Tv_n]_F \\

|        &    |     &      & | \\

\end{pmatrix}


הערה1 : המטריצה [T]^E_F היא המטריצה היחידה המקיימת את הטענה הבאה

לכל וקטור v\in V מתקיים ש [T]^E_F[v]_E=[Tv]_F


הערה 2 יהיו V_1, V_2, V_3 מרחבים וקטורים עם בסיסים B_1, B_2, B_3בהתאמה. יהיו T:V_1\to V_2 S:V_2\to V_3 שתי ה"ל אזי מתקיים [S\circ T]^{B_1}_{B_3}=[S]^{B_2}_{B_3}\cdot[T]^{B_1}_{B_2}


הערה3: שימו לב שאם ניקח את הוקטורים Tv_1,...,Tv_n ונשים אותם באופן נאיבי בעמודות מטריצה נקבל [T]^E_S (כאשר S הוא הבסיס הסטנדרטי)

אלגוריתם למציאת מטריצה המייצגת את ההעתקה בין בסיסים כלשהם

יהיו מ"ו V,W והעתקה T בינהם ובסיסים E,F בדיוק כמו בהגדרה לעיל. אזי:

  1. מצא את מטריצת המעבר [I]^F_S (קל, לשים את הקואורדינטות לפי הבסיס הסטנדרטי של איברי F בעמודות)
  2. הפוך אותה על מנת לקבל את [I]^S_F
  3. הפעל את ההעתקה T על איברי הבסיס E לקבל Tv_1,...,Tv_n
  4. שים את הקואורדינטות לפי הבסיס הסטנדרטי של התמונות משלב שלוש בעמודות מטריצה [T]^E_S
  5. כפול מטריצות על מנת לקבל [T]^E_F=[I]^S_F[T]^E_S

אלגוריתם למציאת העתקה מפורשת לפי תמונות איברי הבסיס בלבד

תהי T העתקה לינארית הנתונה על ידי התמונות של איברי בסיס B=\{v_1,...,v_n\}. רוצים למצוא את Tv עבור v\in V וקטור כלשהו.

  1. נבצע את האלגוריתם לעיל על מנת למצוא את [T]^E_S.
  2. נכפול במטריצת המעבר על מנת לקבל [T]=[T]^S_S=[T]^E_S[I]^S_E
  3. [T][v]=[Tv] מכיוון שכל אלה בבסיס הסטנדרטי, נכפול בוקטור כללי מהמרחב על מנת למצוא לאן הוא נשלח במפורש.

דוגמא

תרגיל. יהיו V=span\{v_1=(1,0,-1,1),v_2=(-2,1,2,0),v_3=(0,-1,0,1)\} ו W=\mathbb{R}_3[x] מ"ו. תהי העתקה T מV לW המקיימת \forall i:Tv_i=w_i כאשר

w_1=1+x

w_2=x^3+x^2+x+1

w_3=0

מצא את ההעתקה T במפורש.


פתרון. דבר ראשון נמצא את המטריצה המייצגת מB לבסיס הסטדנרטי של הפולינומים S. נשים את התמונות בעמודות

[T]^B_S =\begin{pmatrix}

|        &    |     &    | \\

\big[Tv_1]_S & [Tv_2]_S &[Tv_3]_S \\

|        &    |     &     | \\

\end{pmatrix}=

\begin{pmatrix}

|        &    |     &    | \\

\big[w_1]_S & [w_2]_S &[w_3]_S \\

|        &    |     &     | \\

\end{pmatrix}=
\begin{pmatrix}

1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\

\end{pmatrix}

כעת נמצא את מטריצת המעבר. שימו לב שאנו עוסקים במקרה מיוחד. המרחב שלנו אינו מרחב מוכר, ואנו צריכים למצוא לו בסיס סטנרטי על מנת לקחת את הקואורדינטות של איברי הבסיס הנתון לפי אותו בסיס סטנדרטי שנמציא.

כל הוקטורים בV הינם צירופים לינאריים של הבסיס הנתון. ניקח צירוף לינארי כללי ונראה בקלות שהוא מהצורה (-s,t,s,r)) ולכן בסיס סטנדרטי שקל להוציא את הקואורדינטות לפיו יהיה S_V=\{(-1,0,1,0),(0,1,0,0),(0,0,0,1)\}. מדוע הוא סטנדרטי? קל מאד לראות שלכל וקטור במרחב [(-x,y,x,z)]_{S_V}=(x,y,z).


כעת נמצא מטריצת מעבר [I]^B_{S_V}=
\begin{pmatrix}

-1 & 2 & 0 \\
0 & 1 & -1 \\
1 & 0 & 1 \\


\end{pmatrix}

נהפוכו על מנת לקבל:

[I]^{S_V}_B=([I]^B_{S_V})^{-1}=\frac{1}{3}
\begin{pmatrix}

-1 & 2 & 2 \\
1 & 1 & 1 \\
1 & -2 & 1 \\


\end{pmatrix}


ביחד אנו מקבלים

[T]^{S_V}_S=[T]^{B}_S\cdot [I]^{S_V}_B=
\begin{pmatrix}

1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\

\end{pmatrix}
\cdot
\frac{1}{3}
\begin{pmatrix}

-1 & 2 & 2 \\
1 & 1 & 1 \\
1 & -2 & 1 \\



\end{pmatrix}

=
\frac{1}{3}
\begin{pmatrix}

0 & 3 & 3 \\
0 & 3 & 3 \\
1 & 1 & 1 \\
1 & 1 & 1 \\

\end{pmatrix}


לכן, [T(-x,y,x,z)]_S=[T]^{S_V}_S[(-x,y,x,z)]_{S_V}=
\frac{1}{3}
\begin{pmatrix}

0 & 3 & 3 \\
0 & 3 & 3 \\
1 & 1 & 1 \\
1 & 1 & 1 \\

\end{pmatrix}
\cdot
\begin{pmatrix}

x \\
y \\
z  \\

\end{pmatrix}

=

\begin{pmatrix}

y+z \\
y+z \\
\frac{1}{3}(x+y+z)  \\
\frac{1}{3}(x+y+z) \\

\end{pmatrix}


ולכן בסופו של דבר:

T(-a,b,a,d)=b+d +(b+d)x + \frac{1}{3}(a+b+d)x^2+ \frac{1}{3}(a+b+d)x^3

תרגיל. (6.12) תהי T:\mathbb{R}^2\rightarrow \mathbb{R}^2 העתקה של שיקוף ביחס לציר x. מצא בסיס סדור B ל \mathbb{R}^2 עבורו [T]_B=\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}

פתרון.

בסיס סדור יכיל שני וקטורים v_1=(a,b),v_2=(c,d). לפי הנתונים T(a,b)=(a,-b) וגם T(c,d)=(c,-d).

עמודות המטריצה המייצגת הינן הקואורדינטות של התמונות של איברי הבסיס, לפי הבסיס. לכן

(a,-b)=T(a,b)=(-1)\cdot (a,b) + 0 \cdot (c,d)

(c,-d)=T(c,d)=2\cdot (a,b) + 1 \cdot (c,d)

ביחד קיבלנו 4 משוואות:

a=-a \Rightarrow a=0

-b=-b

c=2a+c=c

-d = 2b+d \Rightarrow d=-b

לכן, עלינו לבחור b,c,d שיקיימו את המשוואות לעיל וגם יתקיים שהוקטורים (a,b),(c,d) בת"ל.

לכן b אינו אפס, וגם c אינו אפס. d חייב להיות -b.

ניקח (0,1),(1,-1) ואכן תנאי השאלה מתקיימים.

מחלקת שקילות של מטריצות המייצגות העתקה

תרגיל. נגדיר יחס על המטריצות הריבועיות: A נמצאת ביחס עם B (או "A מתייחסת ל-B") אם B הינה המטריצה המייצגת של ההעתקה T_Av:=Av ביחס לבסיס כלשהו. הראו שזהו יחס שקילויות, והוכיחו שפונקציית הtrace מוגדרת היטב על חבורת המנה

הוכחה.

  • רפלקסיביות: A מייצגת את ההעתקה של עצמה ביחס לבסיס הסטנדרטי, שכן Ae_i=C_i(A)


  • סימטריות: נניח B מייצגת את ההעתקה של A. אזי B=[T_A]^E_E. כפי שהראינו קודם B=[T_B]^S_S


נפתח את שני צידי המשוואה לקבל [T_B]^S_S=[I]^S_E[T_A]^S_S[I]^E_S=[I]^S_EA[I]^E_S ומכאן נובע A=[I]^E_S[T_B]^S_S[I]^S_E


טענה: כל מטריצה הפיכה הינה מטריצת מעבר מקבוצת העמודות שלה, לבסיס הסטנדרטי (קל להוכיח).


לכן נמשיך, נסמן בF את קבוצת העמודות של המטריצה [I]^S_E וסה"כ נקבל A=[I]^S_F[T_B]^S_S[I]^F_S=[T_B]^F_F כפי שרצינו.


  • טרנזיטיביות: נניח B=[T_A]^E_E וגם C=[T_B]^F_F לכן ביחד

C=[T_B]^F_F=[I]^S_F[T_B]^S_S[I]^F_S=[I]^S_FB[I]^F_S=[I]^S_F[T_A]^E_E[I]^F_S=


טענה: יהי בסיס E. אזי כל מטריצה הפיכה הינה מטריצת מעבר מבסיס כלשהו לבסיס E. ניקח את הצירופים הלינאריים של איברי E עם הסקלרים מעמודות המטריצה ההפיכה. מכיוון שעמודות המטריצה ההפיכה בת"ל, הקואורדינטות בת"ל ולכן גם הצירופים הלינאריים עצמם בת"ל ולכן מהווים בסיס המקיים את הדרוש.


נמשיך, C=[I]^E_G[T_A]^E_E[I]^G_E=[T_A]^G_G כפי שרצינו.


על מנת להוכיח שפונקצית הtrace מוגדרת היטב יש להראות שהיא שווה על כל שתי מטריצות שקולות. אבל זה קל כיוון ש tr(B)=tr([I]^S_EA[I]^E_S)=tr(A[I]^S_E[I]^E_S)=tr(A)