הבדלים בין גרסאות בדף "88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 0"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(טבלאות אמת)
(טבלאות אמת)
שורה 16: שורה 16:
  
 
==טבלאות אמת==
 
==טבלאות אמת==
הוכח באמצעות טבלאות אמת שניתן להציג את הקשרים 'גרירה' ו'וגם' באמצעות 'או' ושלילה בלבד
+
*הוכח באמצעות טבלאות אמת שניתן להציג את הקשרים 'גרירה' ו'וגם' באמצעות 'או' ושלילה בלבד
 +
הוכח אחד או יותר מבין טאוטולוגיות הבאות (נציג בהזדמנות זאת את המושג טאוטולוגיה)
 +
* <math>\ \neg\neg A \equiv A</math>
 +
* <math>\ (A\rightarrow B) \equiv ((\neg A) \vee B)</math>.
 +
* <math>\ (A \leftrightarrow B) \equiv ((A \wedge B)\vee((\neg A)\wedge (\neg B)</math>.
 +
* <math>\ (A \leftrightarrow B) \equiv (A \rightarrow B) \wedge (B \rightarrow A)</math>.
 +
* <math>\ (A \rightarrow B) \equiv ((\neg B) \rightarrow (\neg A))</math>.

גרסה מ־09:56, 8 ביולי 2012

סיכום הנושא המלא נמצא בדף 88-101 חשיבה מתמטית.

קשרים, כמתים, הצרנה

ראשית, נכיר את הקשרים הלוגיים (וגם, או, שלילה, גורר), הכמתים (לכל, קיים) ואת מושג ההצרנה.

תרגיל: הגדרה: איחוד של שתי קבוצות A וB הוא קבוצת האיברים שנמצאים לפחות באחת הקבוצות. החיתוך הוא קבוצת האיברים שנמצאים בשתי הקבוצות.

  • הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וB
  • הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וB

הגדרה: קבוצה A מוכלת בקבוצה B אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים \mathbb{N}\subseteq\mathbb{Z}, והשלמים מוכלים בממשיים \mathbb{Z}\subseteq\mathbb{R}).

  • הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
  • הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB

טבלאות אמת

  • הוכח באמצעות טבלאות אמת שניתן להציג את הקשרים 'גרירה' ו'וגם' באמצעות 'או' ושלילה בלבד

הוכח אחד או יותר מבין טאוטולוגיות הבאות (נציג בהזדמנות זאת את המושג טאוטולוגיה)

  • \ \neg\neg A \equiv A
  • \ (A\rightarrow B) \equiv ((\neg A) \vee B).
  • \ (A \leftrightarrow B) \equiv ((A \wedge B)\vee((\neg A)\wedge (\neg B).
  • \ (A \leftrightarrow B) \equiv (A \rightarrow B) \wedge (B \rightarrow A).
  • \ (A \rightarrow B) \equiv ((\neg B) \rightarrow (\neg A)).