5 february 2007

Differential geometry 88-526 FINAL EXAM MOED ALEF

- 1. This problem deals with curves in Euclidean space.
 - (a) Define a regular curve in \mathbb{R}^3 .
 - (b) Define the arclength parameter.
 - (c) Consider surfaces $M_1, M_2 \subset \mathbb{R}^3$ defined by

$$M_1 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 169\},$$

and

$$M_2 = \{(x, y, z) \in \mathbb{R}^3 | x = 5\}.$$

Consider the intersection $C = M_1 \cap M_2$. Find an arclength parametrisation of C.

- (d) Calculate the curvature of C.
- 2. This problem deals with surfaces in Euclidean space.
 - (a) Define a regular surface.
 - (b) Consider the surface $M_3 \subset \mathbb{R}^3$ defined by

$$M_3 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 4\}.$$

Calculate the Weingarten map of M_3 .

- (c) Calculate the Gaussian curvature function $K(u^1, u^2)$ of M_3 .
- 3. Consider the surface $M_4 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 9\}.$
 - (a) Find a parametrisation of M_4 .
 - (b) Consider a curve $\beta(s)$ on M_4 such that the vector $\beta''(s) \in \mathbb{R}^3$ is proportional to $\beta(s)$ for every value of parameter s. In other words, the pair of vectors $(\beta(s), \beta''(s))$ is linearly dependent. Find a differential equation satisfied by the curve.
- 4. In coordinates $(u^1, u^2) = (x, y)$, consider the metric $\lambda(y)(dx^2 + dy^2)$, where $\lambda(y) = y^{-2}$.
 - (a) Calculate the symbol Γ_{11}^1 of the metric.
 - (b) Calculate the Gaussian curvature function K(x, y) of the metric.
- 5. Consider a lattice $L \subset \mathbb{R}^2$ defined by $L = \mathbb{Z} \oplus 2\mathbb{Z}$, in other words, $L = \{(n, 2m) \in \mathbb{R}^2 | n, m \in \mathbb{Z}\}.$
 - (a) Calculate the successive minima λ_i of L.
 - (b) Calculate the systole $\operatorname{sys}_{\pi_1}(\mathbb{T}_0)$ of the torus $\mathbb{T}_0 = \mathbb{R}^2/L$.
 - (c) Define conformal equivalence of metrics.
 - (d) Find the smallest constant C > 0 such that for every torus \mathbb{T} conformally equivalent to \mathbb{T}_0 , one has $\operatorname{sys}_{\pi_1}(\mathbb{T})^2 \leq C \operatorname{area}(\mathbb{T})$.