First-order logic: First-order logical equivalence. Negation of first-order formulae.

Valentin Goranko

DTU Informatics

September 2011

Logical equivalence in first order logic

Formulae A and B are logically equivalent, denoted $A \equiv B$, iff

$$A \models B$$
 and $B \models A$.

Equivalently, $A \equiv B$ iff

$$\models A \leftrightarrow B$$
.

For example, any first-order instance of a pair of equivalent propositional formulae is a pair of logically equivalent formulae.

Some basic properties of logical equivalence:

- 1. $A \equiv A$
- 2. If $A \equiv B$ then $B \equiv A$.
- 3. If $A \equiv B$ and $B \equiv C$ then $A \equiv C$.
- 4. If $A \equiv B$ then $\neg A \equiv \neg B$, $\forall xA \equiv \forall xB$, and $\exists xA \equiv \exists xB$.
- 5. If $A_1 \equiv B_1$ and $A_2 \equiv B_2$ then $A_1 \circ A_2 \equiv B_1 \circ B_2$ where \circ is any of \land, \lor, \rightarrow and \leftrightarrow .

Some logical equivalences involving quantifiers

- $\neg \forall x A \equiv \exists x \neg A$.
- $\neg \exists x A \equiv \forall x \neg A$.
- $\forall xA \equiv \neg \exists x \neg A$.
- $\exists x A \equiv \neg \forall x \neg A$.
- $\exists x \exists y A \equiv \exists y \exists x A$.
- $\forall x \forall y A \equiv \forall y \forall x A$.

NB: $\forall x \exists y A \not\equiv \exists y \forall x A$. Why?

For instance, "For every integer x there is an integer y such that x < y" is true, but it does not imply "There is an integer y such that for every integer x, x < y.", which is false.

More logical equivalences and non-equivalences

- $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$
- $\forall x (P(x) \lor Q(x)) \not\equiv \forall x P(x) \lor \forall x Q(x)$
- $\forall x (P(x) \to Q(x)) \not\equiv \forall x P(x) \to \forall x Q(x)$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$
- $\exists x (P(x) \land Q(x)) \not\equiv \exists x P(x) \land \exists x Q(x)$
- $\exists x (P(x) \to Q(x)) \stackrel{?}{\equiv} \exists x P(x) \to \exists x Q(x)$

Negating first-order formulae

Using appropriate equivalences, all negations in a first-order formula can be driven inwards, until they reach atomic formulae.

For example, to negate

"For every car, there is a driver who, if (s)he can start it, then (s)he can stop it."

we first translate it to first-order logic:

$$\forall x (\mathsf{Car}(x) \to \exists y (\mathsf{Driver}(y) \land (\mathsf{Start}(x,y) \to \mathsf{Stop}(x,y)))).$$

Negating first-order formulae: example cont'd Now negating:

$$\neg \forall x (\mathsf{Car}(x) \to \exists y (\mathsf{Driver}(y) \land (\mathsf{Start}(x,y) \to \mathsf{Stop}(x,y))))$$

$$\equiv \exists x \neg (\mathsf{Car}(x) \to \exists y (\mathsf{Driver}(y) \land (\mathsf{Start}(x,y) \to \mathsf{Stop}(x,y))))$$

$$\equiv \exists x (\mathsf{Car}(x) \land \neg \exists y (\mathsf{Driver}(y) \land (\mathsf{Start}(x,y) \to \mathsf{Stop}(x,y))))$$

$$\equiv \exists x (\mathsf{Car}(x) \land \forall y \neg (\mathsf{Driver}(y) \land (\mathsf{Start}(x,y) \to \mathsf{Stop}(x,y))))$$

$$\equiv \exists x (\mathsf{Car}(x) \land \forall y (\neg \mathsf{Driver}(y) \lor \neg (\mathsf{Start}(x,y) \to \mathsf{Stop}(x,y))))$$

$$\equiv \exists x (\mathsf{Car}(x) \land \forall y (\neg \mathsf{Driver}(y) \lor (\mathsf{Start}(x,y) \land \neg \mathsf{Stop}(x,y)))).$$

Since $\neg A \lor B \equiv A \to B$, the last formula is equivalent to $\exists x (\mathsf{Car}(x) \land \forall y (\mathsf{Driver}(y) \to (\mathsf{Start}(x,y) \land \neg \mathsf{Stop}(x,y)))).$

Negating first-order formulae: example completed

Thus, the negation of the sentence

"For every car, there is a driver who, if (s)he can start it, then (s)he can stop it."

formalized in first-order logic as

$$\forall x (\mathsf{Car}(x) \to \exists y (\mathsf{Driver}(y) \land (\mathsf{Start}(x,y) \to \mathsf{Stop}(x,y))))$$

is equivalent to

$$\exists x (\mathsf{Car}(x) \land \forall y (\mathsf{Driver}(y) \to (\mathsf{Start}(x,y) \land \neg \mathsf{Stop}(x,y))))$$

which, translated back to natural language, reads:

There is a car such that every driver can start it and cannot stop it.

Negating restricted quantifiers

$$\neg \forall x (P(x) \to A) \equiv \exists x (P(x) \land \neg A)$$
$$\neg \exists x (P(x) \land A) \equiv \forall x (P(x) \to \neg A),$$

and hence:

$$\neg \forall x \in \mathbf{X}(A) \quad \equiv \quad \exists x \in \mathbf{X}(\neg A)$$
$$\neg \exists x \in \mathbf{X}(A) \quad \equiv \quad \forall x \in \mathbf{X}(\neg A)$$