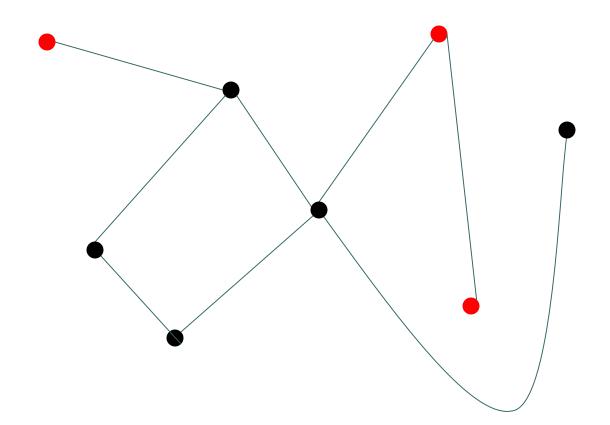
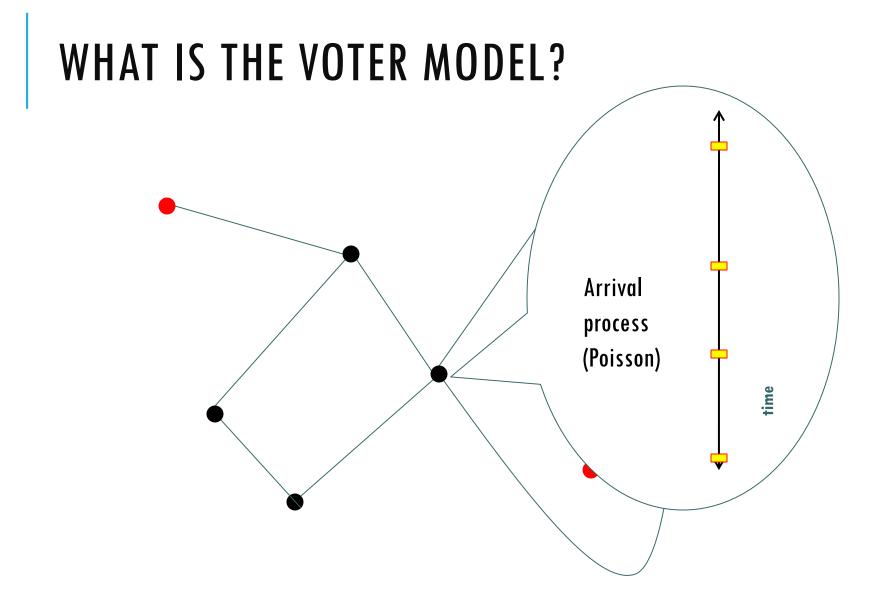


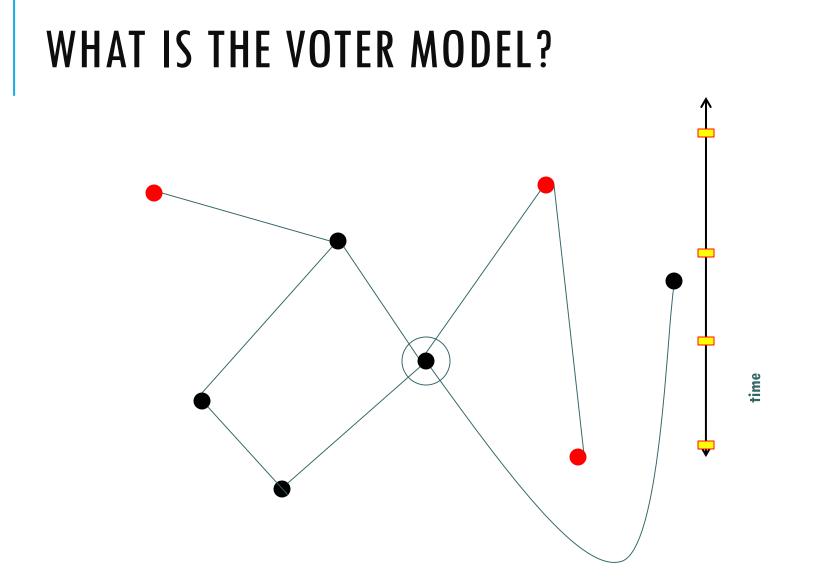
MEAN FIELD CONDITIONS FOR COALESCING RANDOM WALKS

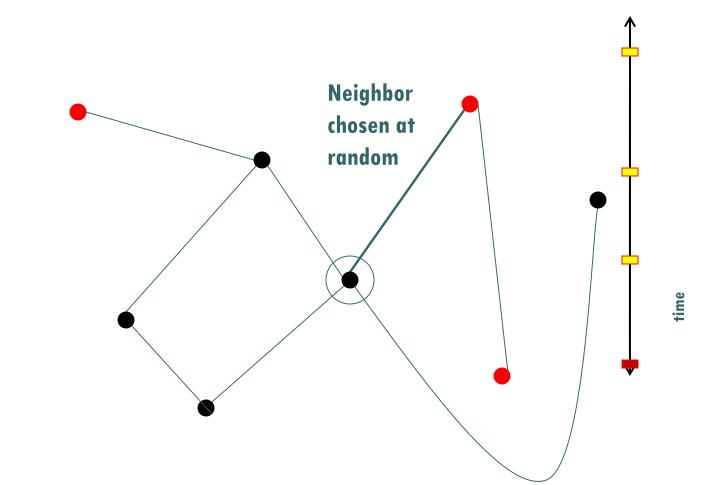
Roberto Imbuzeiro Oliveira IMPA, Rio de Janeiro SPA 2014 (Buenos Aires) <u>Ann. Prob. 2013</u>

WHAT IS THE VOTER MODEL?

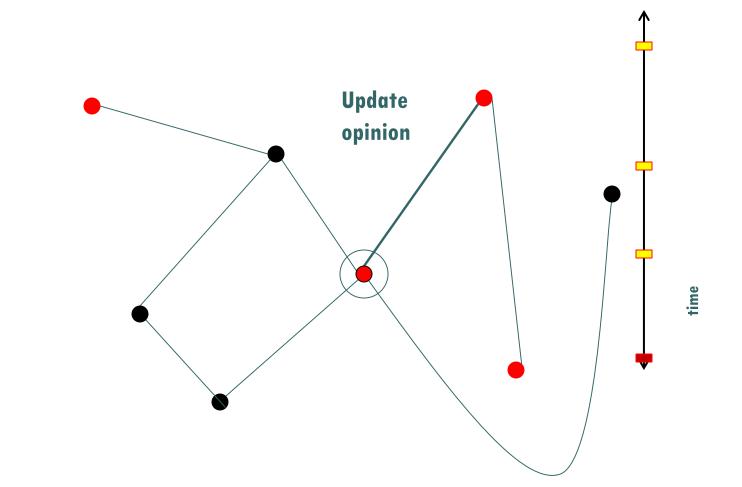




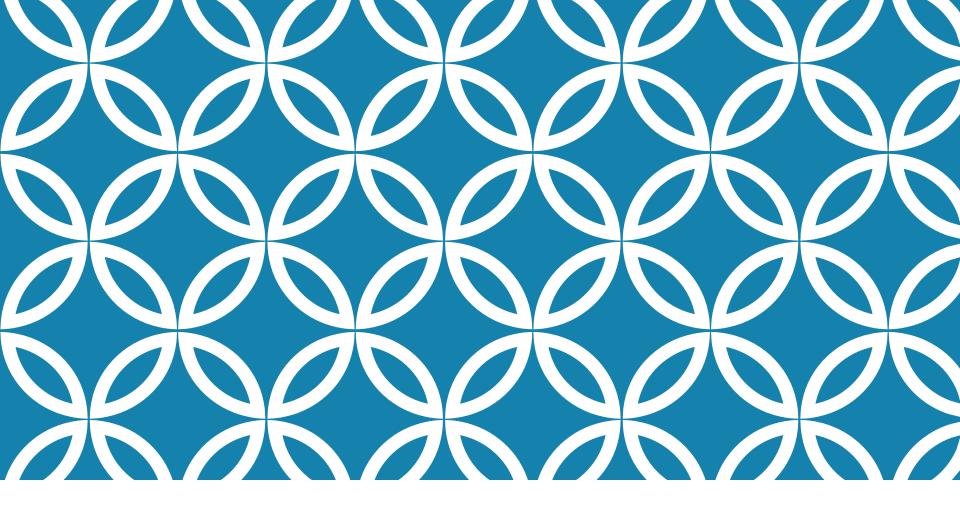




WHAT IS THE VOTER MODEL?

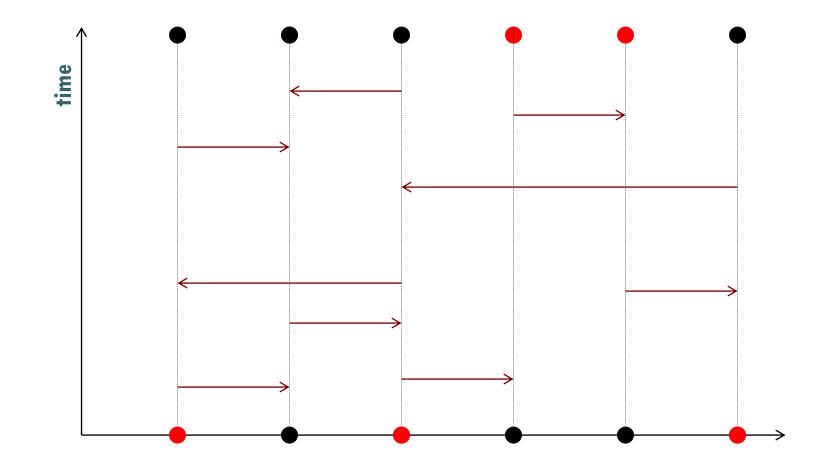


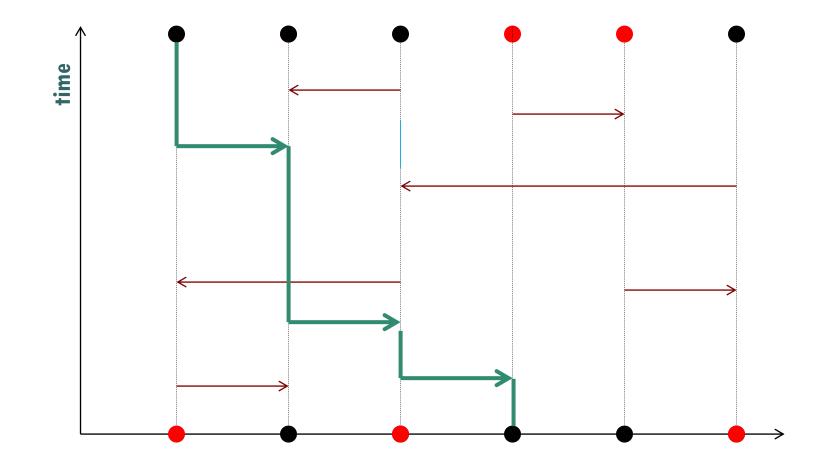
WHAT IS THE VOTER MODEL?

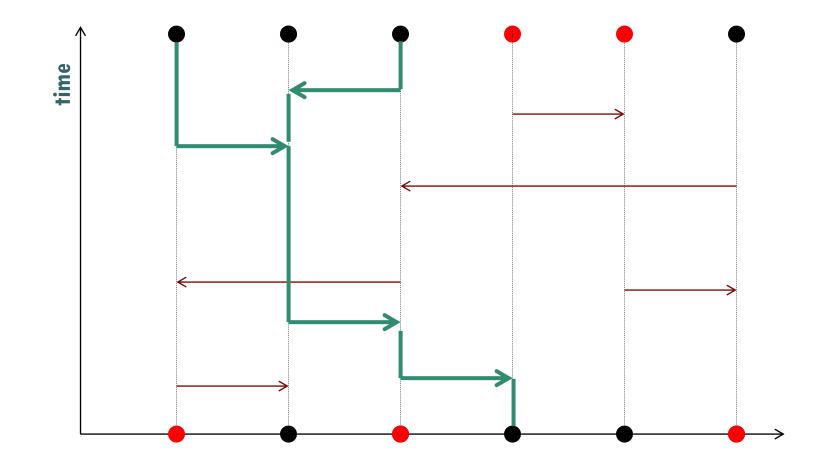


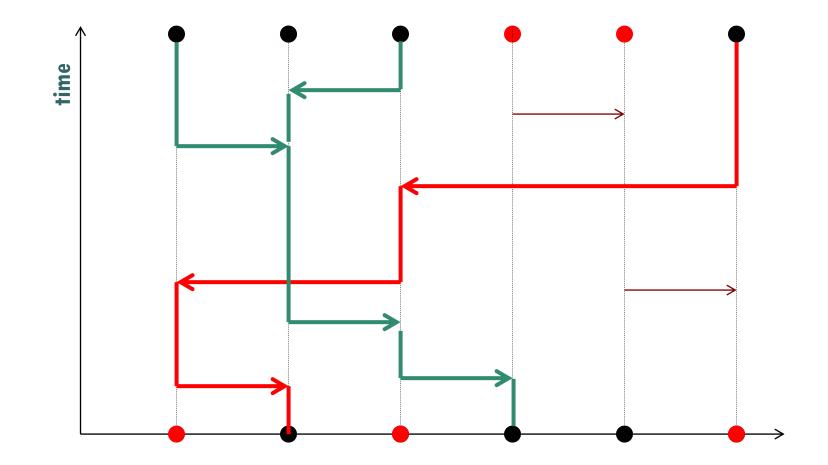
VOTERS, RANDOM WALKERS, AND DUALITY

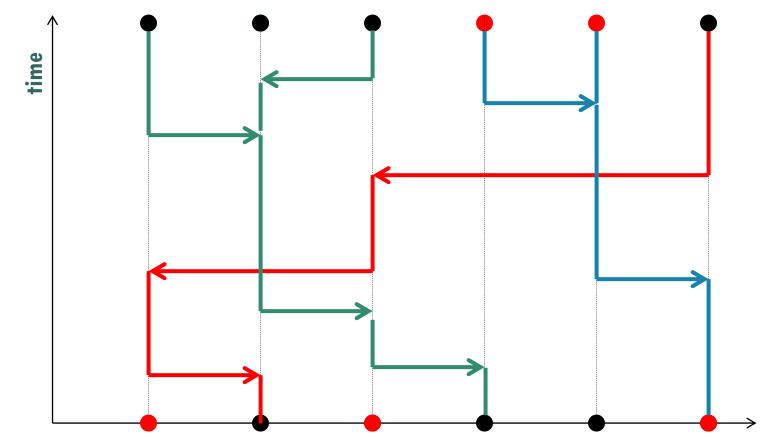
The original motivation for studying coalescing random walks is the <u>voter</u> model.











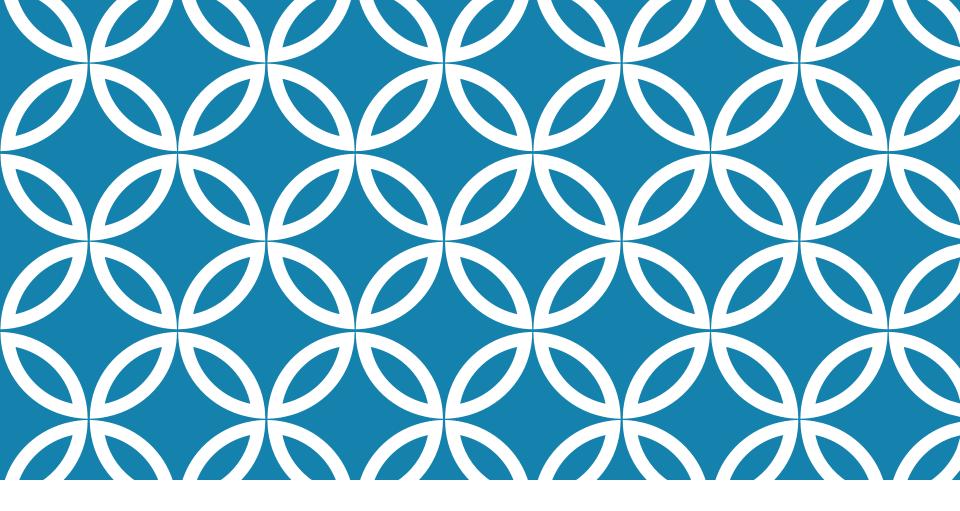
The upshot is that the voter model is dual to

Coalescing random walks,

the main subject of this talk. Will discuss:

<u>C:= full coalescence time.</u>

Results extend to voters with i.i.d. initial opinions.



MEAN FIELD BEHAVIOR FOR FULL COALESCENCE

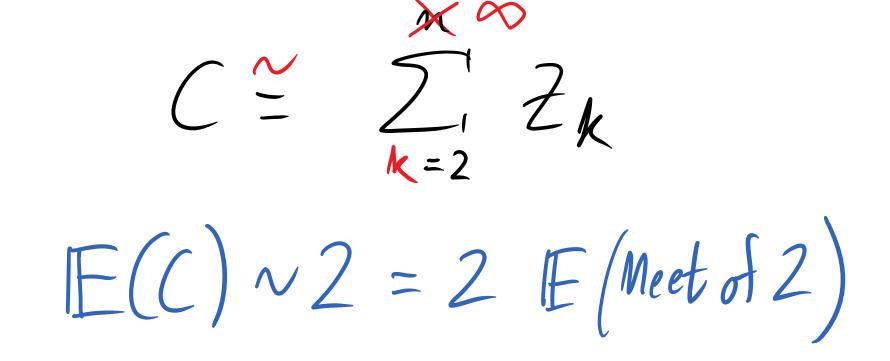
The case of the complete graph is easy. Other cases turn out to be similar.

Time to move from
$$k$$
 to $k-1$ particles:
 $P(k \ge t) = e^{-\binom{k}{2}t}$

Time to move from
$$k$$
 to $k-1$ particles:
 $P(k \ge t) = e^{-\binom{k}{2}t}$
i.e. exponential with mean $\binom{h}{2}$.

$$C = \sum_{k=2}^{n} Z_{k}$$

$$\{Z_{k}\}_{h} \text{ independent, } Z_{h} = d \exp\left(\frac{1}{2}\right).$$



A RESULT BY COX

Cox'91: Consider CRW based on simple random walk in

 $(Z_n)^d$

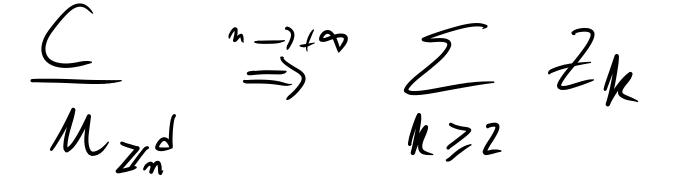
where **d** is at least **2**. Then:

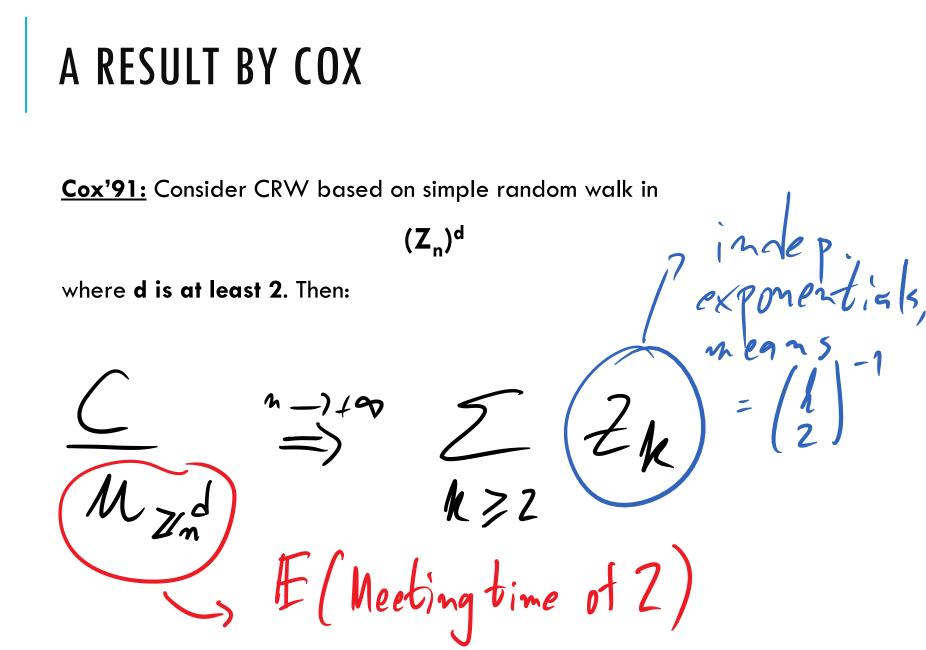
A RESULT BY COX

Cox'91: Consider CRW based on simple random walk in

 $(Z_n)^d$

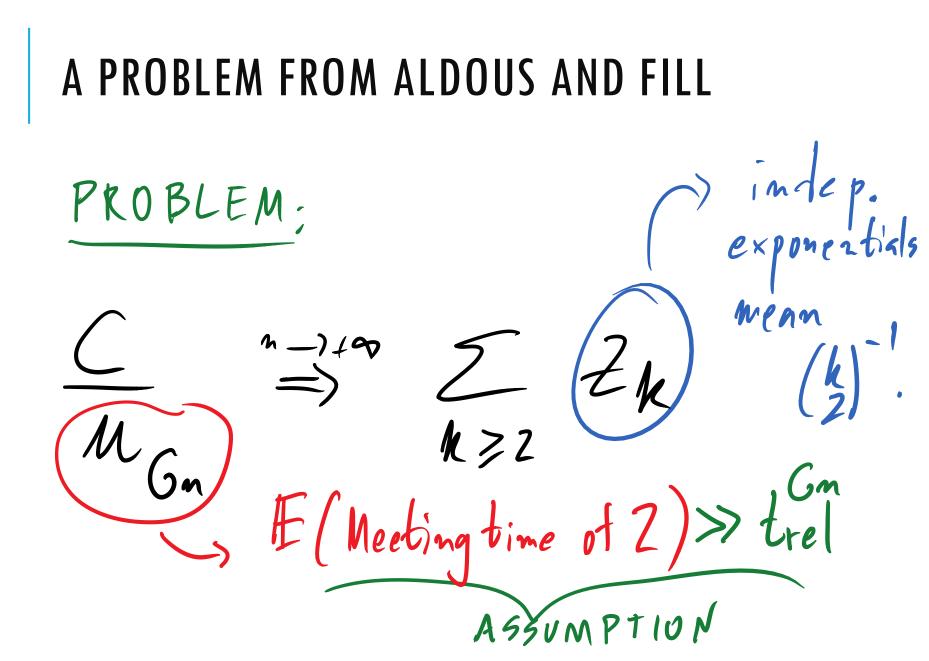
where **d** is at least **2**. Then:





A PROBLEM FROM ALDOUS AND FILL

<u>**Prove that</u>** this is universal over large transitive graphs with <u>**relaxation time** small.</u></u>



A PROBLEM FROM ALDOUS AND FILL

Prove that this is universal over large transitive graphs with **relaxation time** smaller than expected meeting time.

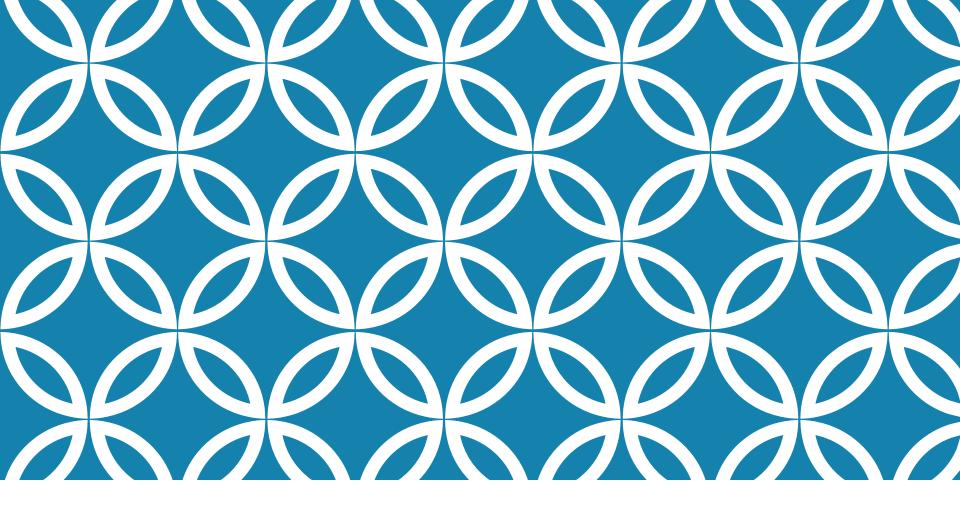
<u>Some assumption is needed:</u> no mean field behavior for star graphs or one-dimensional cycles.

A MORE GENERAL PROBLEM BY DURRETT

In Random Graph Dynamics Durrett studies the same kind of problem over certain **random graphs**.

Those have **power law degrees** and are "very non transitive" in many ways.

Nevertheless, D. obtains some partial results in the direction of **universality of mean field behavior**.



MAIN RESULTS

Mean field behavior is indeed very general. We give two results.

A THEOREM FOR TRANSITIVE GRAPHS Rah: sequence of reversible, transitive chains on finite spaces. Mmin: expected meeting time of 2 indep. Qn-walks

A THEOREM FOR TRANSITIVE GRAPHS Raha : sequence of reversible, transitive chains on finite graces. Emixing time expected meeting time of 2 indep. Qn-walks

A THEOREM FOR TRANSITIVE CHAINS

 $\frac{Ln}{M_{M}} \xrightarrow{n \to +\infty} \frac{2}{k_{22}} \frac{2}{k}$ whenever $\frac{t_{mix,n}}{M_m} \xrightarrow{m \to +\infty} 0$

A THEOREM FOR TRANSITIVE CHAINS

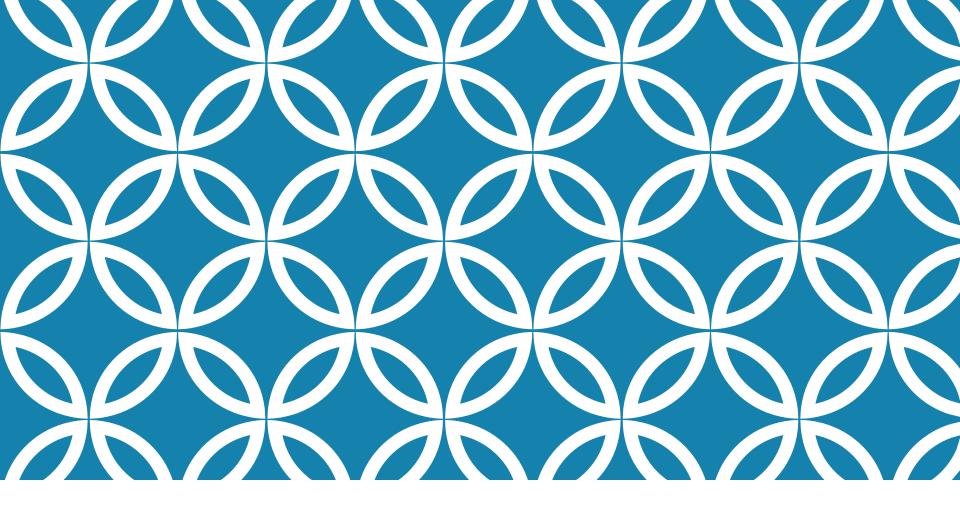
 $\frac{Ln}{M_{M}} \xrightarrow{n \to +\infty} \frac{2}{k_{\geq 2}} \frac{Z_{k}}{k_{\geq 2}}$ whenever $\frac{t_{mix,n}}{M_m} \xrightarrow{m \to +\infty} 0$ $EAldous/Fill: trel, m/m_m \to 0$.

A THEOREM FOR GENERAL CHAINS

We also have a theorem not requiring transitivity or reversibility, with messier assumptions.

It covers the random graphs of Durrett + many other examples (eg. supercritical percolation in 3 or more dimensions).

<u>There certainly is room for improvement here.</u>



MAIN PROOF IDEAS

Exponential hitting times, with good error bounds + quantiles + control of big bang phase.

THE THEOREM FOR TRANSITIVE CHAINS

 $\frac{Ln}{M_{M}} \xrightarrow{n \to +\infty} \frac{2}{k_{z2}} \frac{2}{k}$ whenever $\frac{t_{mix,n}}{M_m} \xrightarrow{m \to +\infty} 0$

COMPARE WITH COMPLETE GRAPH

The random variables Z_k have a clearly defined meaning in the complete graph case.

Time to move from k to k-1 particles: $\mathbb{P}(t_k \ge t) = e^{-\binom{k}{2}t}$

COMPARE WITH COMPLETE GRAPH

The random variables Z_k have a clearly defined meaning in the complete graph case.

Time to move from k to k-1 particles: $\mathbb{P}(t_k \ge t) = e^{-\binom{k}{2}t}$ BASIC IDEA: prove similar result for general chains.

CONNECTION WITH HITTING TIMES

k random walks => one random on V => Walk on V (product)

CONNECTION WITH HITTING TIMES

one random walk on Maroduct) k random walks =>

Well-known "metatheorem" (Aldous, Aldous/Brown,...).

$$P = chain on R$$
, $A \subset R$ with
 T stationary, $F_{\pi}(\chi_A) \gg t_{mix}$.

Well-known "metatheorem" (Aldous, Aldous/Brown,...).

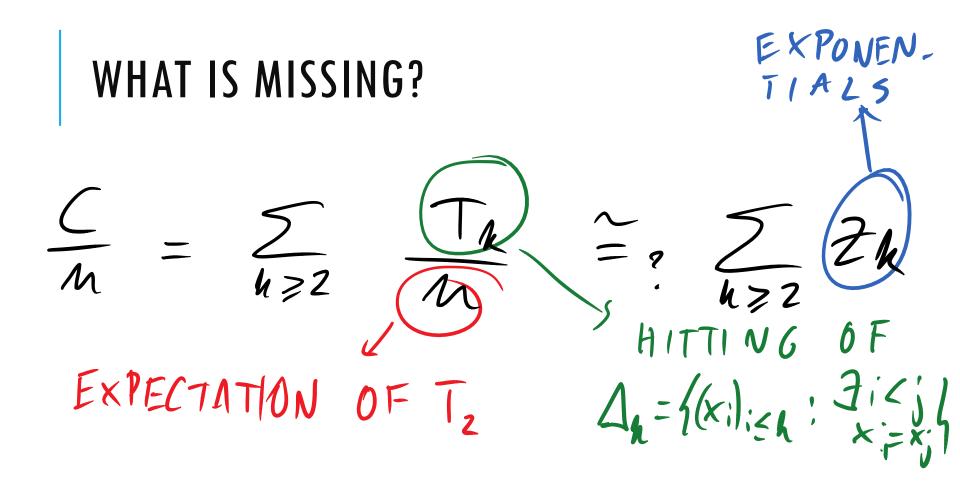
P= chain on R, A<R with T stationary, $F_{\pi}(\chi_A) > t_{mix}$. $\mathbb{P}_{\mathrm{T}}(\mathcal{T}_{A/\mathrm{E}_{\mathrm{T}}}(\mathcal{T}_{A}) > t) \approx -t$

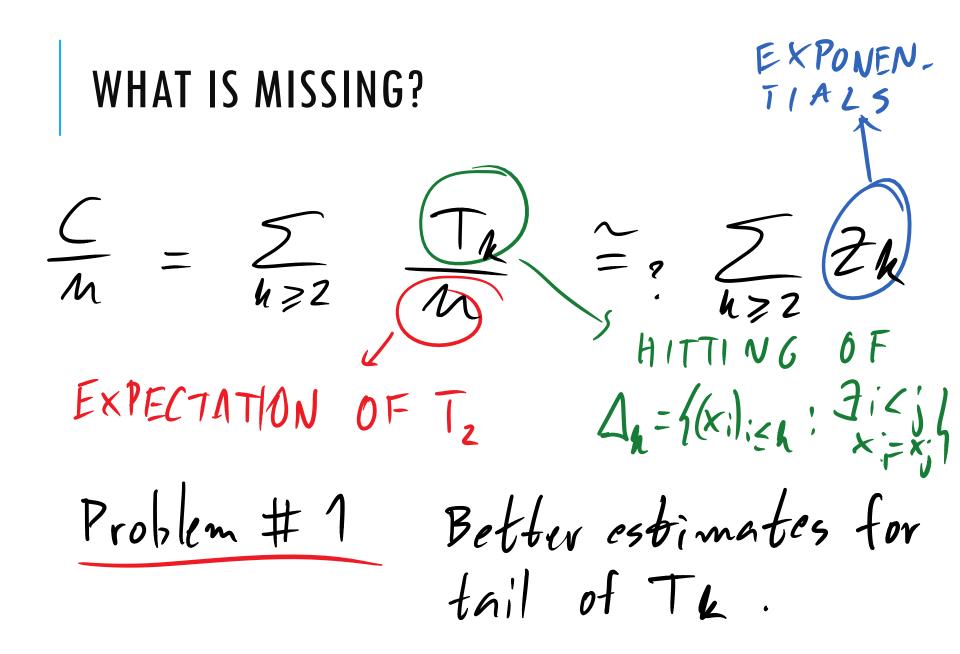
 $(h=2) \implies E_{T}(T_2) = M_n >> t_{mix}$

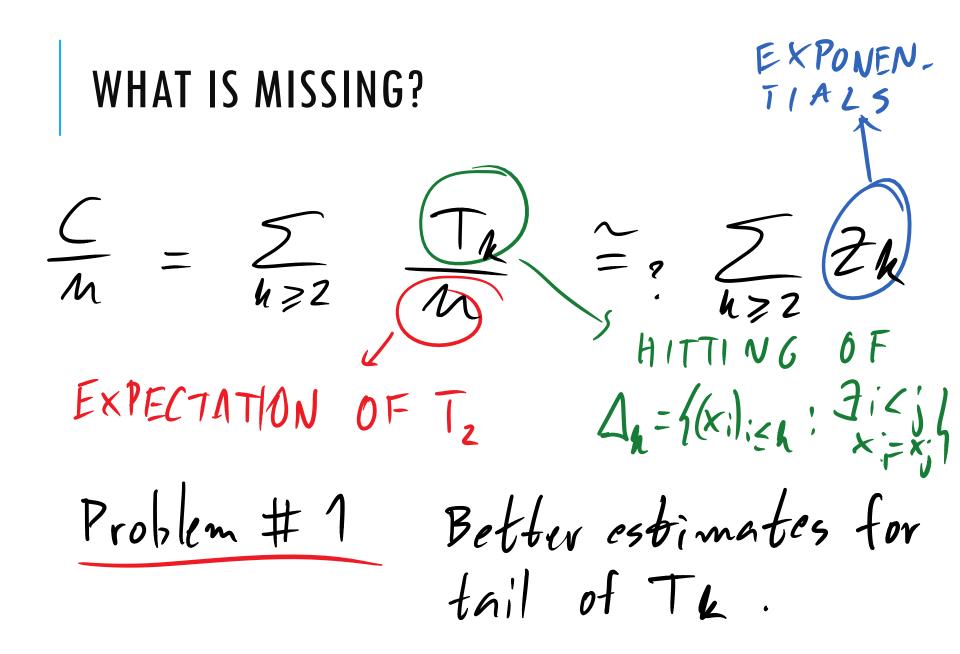
$$\begin{pmatrix} \mathbf{A} = \mathbf{2} \end{pmatrix} \Rightarrow \mathbb{E}_{\mathrm{T}}(\mathsf{T}_{2}) = \mathcal{M}_{\mathrm{n}} >> t_{\mathrm{mix}} \\ \mathbb{P}_{\mathrm{T}}\left(\mathsf{T}_{\mathrm{A}}/\mathbb{E}_{\mathrm{T}}(\mathsf{T}_{\mathrm{A}}) > t\right) \approx e^{-t}$$

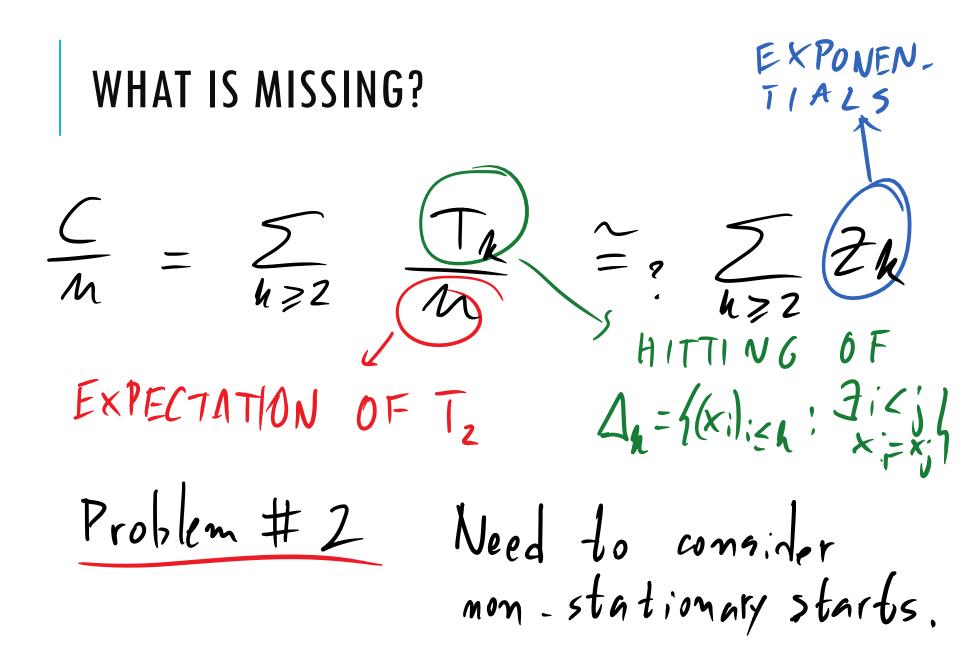
 $T_{k} = 1^{st} coales \implies Hitting time of$ cence among $k \qquad \Delta_{k} = 1^{s} \sum_{i=1}^{k} \frac{1}{x_{i}} \sum_{x_{i}=x_{i}}^{s} \frac{1}{x_{i}}$ (larger k) $P_{T}\left(T_{k}(T_{n})>t\right) \approx e^{-t}$

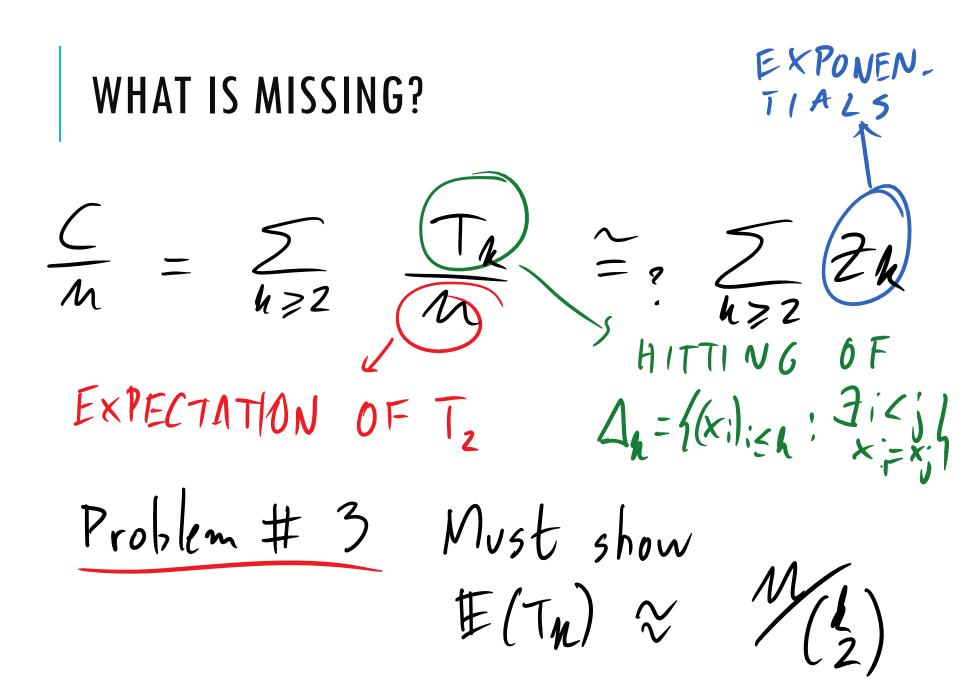
EXPONEN-TIALS WHAT IS MISSING? C M $\sum_{n=1}^{\infty}$ h > 2 h72 4

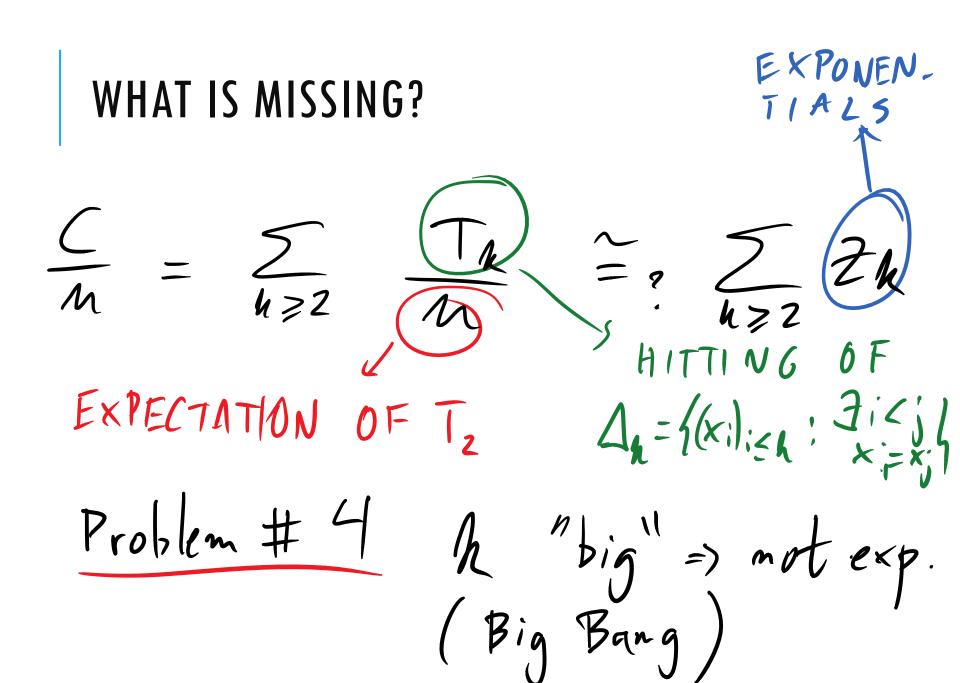












EXPONENTIAL HITTING TIMES (NEW)

Sharper theorem.

$$P = chain on \mathcal{R}, A < \mathcal{R} \text{ with}$$

$$T \quad stationary; \mathcal{E} = O\left(\left(\frac{t_{mix}}{E_{T}(T_{A})}\right)^{\frac{1}{2}}\right) < < 1$$

$$I) \quad P_{X}\left(\frac{T_{A}}{E_{T}(T_{A})} > t\right) \leq (1+\varepsilon) e^{-\frac{t}{1+\varepsilon}}$$

EXPONENTIAL HITTING TIMES (NEW)

Sharper theorem.

$$P = chain on \mathcal{R}, A < \mathcal{R} \text{ with}$$

$$T \quad stationary; \mathcal{E} = \mathcal{R}\left(\left(\frac{t_{mix}}{E_{T}(T_{A})}\right)^{2}\right) < 1$$

$$P_{X}\left(\frac{T_{A}}{E_{T}(T_{A})} > 0\right) \ge \left(1 - \varepsilon\right) e^{-\frac{t}{1 - \varepsilon}}$$

EXPONENTIAL HITTING TIMES (NEW) $\mathcal{E} = \mathcal{E} + \mathcal{P}_{x} (\mathcal{T}_{A} < \mathcal{E} + \mathcal{F}_{T}(\mathcal{T}_{A}))$ $P = chain on \mathcal{R}, A \subset \mathcal{D} \text{ with} \\ T \quad stationary; \mathcal{E} = \mathcal{R}\left(\left(\frac{t_m}{T_m}\right)^2\right) < <1$ $\mathbb{P}_{X}\left(\begin{array}{c}\mathcal{T}_{A}\\\mathcal{F}_{T}\left(\mathcal{T}_{A}\right)>1\right) \geq (1-\varepsilon)e$

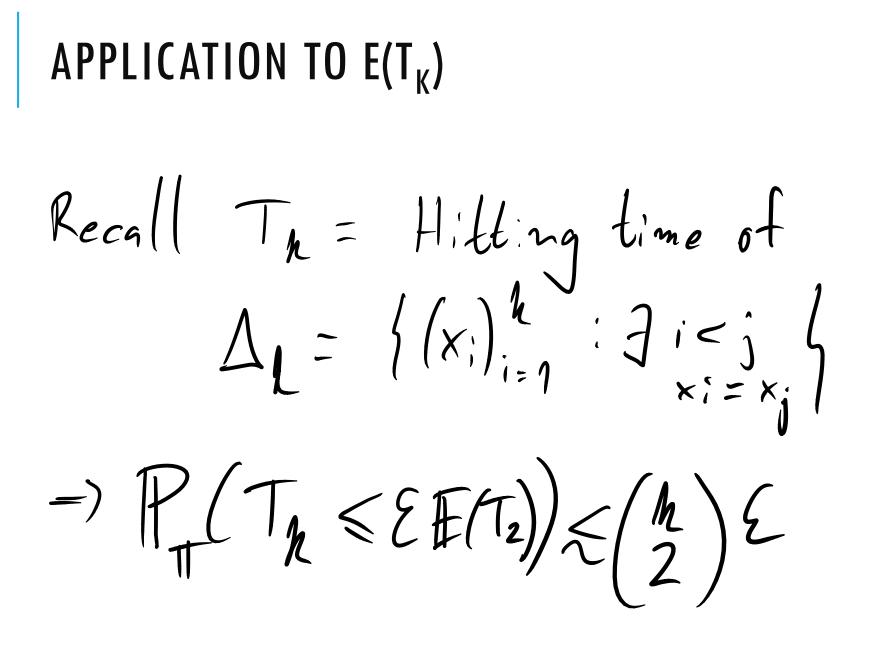
EXPONENTIAL HITTING TIMES (NEW)

Sharper theorem.

$$P = chain on \mathcal{R}, A < \mathcal{R} \text{ with} \\ T \quad stationary; \mathcal{E} = \mathcal{N}\left(\left(\frac{t_{mix}}{E_{T}(T_{A})}\right)^{2}\right) < 1 \\ \hline \mathcal{E}_{T}(T_{A})\right)^{2} \\ \hline \mathcal{E}_{T}(T_{A}) \\ \hline \mathcal{E}_{T$$

APPLICATION TO
$$E(T_{K})$$

Recall $T_{k} = Hitting$ time of
 $\Delta_{L} = \{(x_{i})_{i=1}^{k} : \exists i < j \\ x_{i} = x_{j} \}$

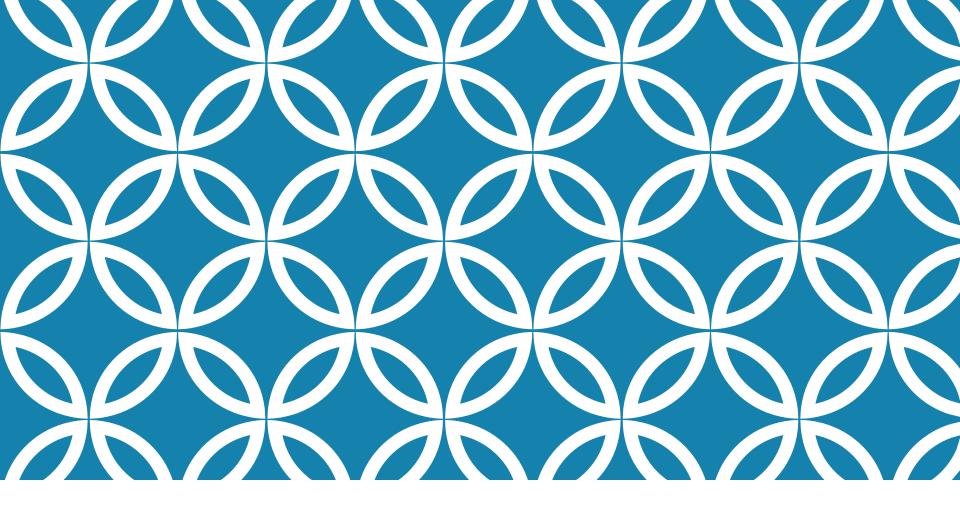


APPLICATION TO $E(T_{K})$ Recall $T_{k} = Hilting$ Also needreverse inequaltime of $<math>A_{L} = \{(x_{i})\}_{i=1}^{k}$ $A_{i} = x_{i}^{k}$ APPLICATION TO $E(T_{\kappa})$ $=) \mathbb{P}_{\mathbb{T}}(\mathcal{T}_{h} \leq \mathbb{E}\mathbb{E}(\mathcal{T}_{2})) \leq \binom{h}{2} \leq \mathbb{E}$

APPLICATION TO $E(T_{\kappa})$ $\mathbb{P}_{\mathbb{F}}(\mathsf{T}_{\mathcal{K}} \leq \mathbb{E}(\mathsf{T}_{2})) \geq (\frac{1}{2}) \leq$ $-O(k^{4})\mathbb{P}_{T}\left(T_{2}^{1,2} \leq \mathbb{E}(T_{2}), T_{2}^{2,3} \leq \mathbb{E}(T_{2})\right)$

BOUNDING CORRELATIONS (TRANSITIVE)

 $\mathbb{P}_{p3}(T^{1,2} \leq t, T^{2,3} \leq t)$ $\leq 2 \mathbb{P}_{\pi \Theta z} (T^{1,2} \leq t)$ (on blackboard!)



THE END

Thanks for your attention. Here is a <u>link to the paper</u>.