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VOTERS, RANDOM WALKERS,
AND DUALITY

The original motivation for 

studying coalescing

random walks is the voter

model.
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The upshot is that the voter model is dual to

Coalescing random walks,

the main subject of this talk. Will discuss:

C:= full coalescence time.

Results extend to voters with i.i.d. initial opinions.



MEAN FIELD BEHAVIOR FOR 
FULL COALESCENCE

The case of the complete 

graph is easy. Other cases 

turn out to be similar.
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A PROBLEM FROM ALDOUS AND FILL

Prove that this is universal over large transitive graphs

with relaxation time smaller than expected meeting time.

Some assumption is needed: no mean field behavior for star graphs
or one-dimensional cycles.



A MORE GENERAL PROBLEM BY DURRETT

In Random Graph Dynamics Durrett studies the same kind of problem
over certain random graphs. 

Those have power law degrees and are “very non transitive” in many
ways. 

Nevertheless, D. obtains some partial results in the direction of
universality of mean field behavior.



MAIN RESULTS
Mean field behavior is

indeed very general. We

give two results.
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A THEOREM FOR GENERAL CHAINS

We also have a theorem not requiring transitivity or reversibility, with
messier assumptions. 

It covers the random graphs of Durrett + many other examples (eg. 
supercritical percolation in 3 or more dimensions).

There certainly is room for improvement here.



MAIN PROOF IDEAS
Exponential hitting times, 

with good error bounds + 

quantiles + control of big 

bang phase.  
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COMPARE WITH COMPLETE GRAPH

The random variables Zk have a clearly defined meaning in the
complete graph case. 
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EXPONENTIAL HITTING TIMES

Well-known “metatheorem” (Aldous, Aldous/Brown,...).
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EXPONENTIAL HITTING TIMES (NEW)
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BOUNDING CORRELATIONS (TRANSITIVE)



THE END Thanks for your attention.

Here is a link to the paper.

http://projecteuclid.org/euclid.aop/1378991844

