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0.1 Prerequisites

Definition 0.1.1:

In order to reduce any ambiguity, I will define the following substitute for the set of naturals:
Given m ∈ Z:

Nm B {n ∈ Z | n ≥m}

Definition 0.1.2:

Since it pops up a lot in combinatorics and probability, it is useful to define:

[n]B {m ∈ N1 |m ≤ n}

Definition 0.1.3:

I define P k (A) to be the set of all k-length subsets of A:

P k (A)B {B ⊆ A | |B| = k}

Suppose the cardinality of A is n. I’ll define the cardinality of P k (A) to be:(
n
k

)
B |P k (A)|

This is called a binomial coefficient.

Definition 0.1.4:

The symmetric group of a set A, denoted SA, is the set of all bijections from A to itself.
Sn is another and more common way of writing S[n].
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1 Combinatorics

1.1 Orderings

Proposition 1.1.1:

There are n!
(n−k)! injective functions from [k] to [n].

Proof:

Let A be this set of injective functions.
Let’s create a bijection:

f : [n]× [n− 1]× · · · × [n− k + 1] −→ A

We know that forall a1, . . . , ak ∈ [n] there exists a bijection:

f{a1,...,ak } : [n− k] −→ [n] \ {a1, . . . , ak}

So we can define f like so:
f (a1, a2, . . . , an−k) = g

Where:
g(1) = a1

And:
g(i) = f{g(1),...,g(i−1)}(ai)

For i ≥ 2.
This is well-defined and g is an injection since g(i) ∈ [n] \ {g(1), . . . , g(i − 1)} (this can be shown inductively. It is not
trivial since we must prove that g(1) , · · ·g(i − 1) in order to show that f{g(1),...,g(i−1)} is the intended bijection.)
f is injective since if:

f (a1, . . . , an−k)g1 = g2 = f (b1, . . . , bn−k)

Then:
g1(1) = g2(1) =⇒ a1 = b1

And:
g1(2) = g2(2) =⇒ f{a1}(a2) = f{a1}(b2) =⇒ a2 = b2

Since f{a1} is a bijection.
And so on.
Now we must prove that f is surjective. Suppose g is an injection. Notice then that:

f (g(1), f −1
{g(1)}(g(2)), f −1

{g(1),g(2)}(g(3)), . . . , f −1
{g(1),...,g(k−1)}(g(k))) = g

Let h be the left side (f (. . . )), then:

h(i) = f{g(1),...,g(i−1)}
(
f −1
{g(1),...,g(i−1)}(g(i))

)
= g(i)

So h = g as required.
Therefore f is a bijection and:

|A| = n · (n− 1) · · · (n− k + 1) =
n!

(n− k)!

As required.
■

Note:

This proof is just a more rigorous wording of the classic construction of the injective functions.
To construct an injective function, first choose the image of 1. There are n choices for this. Then there are n−1 choices
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for 2, and so on. In the end we get that in total there are:

n · (n− 1) · · · (n− k + 1) =
n!

(n− k)!

choices and thus injective functions.

Lemma 1.1.2:

If A and B are finite sets with the same cardinality, then every injection from A to B is a bijection.

Proof:

Suppose f : A −→ B is an injection. This means that |Imf | = |A| = |B|.
Suppose, for the sake of a contradiction, that f is not a surjection. Then there exists a b ∈ B which has not origin in
A, that is b < Imf .
But we know that Imf ⊔ {b} ⊆ B, so:

|Imf ⊔ {b}| ≤ |B|
=⇒ |Imf |+ 1 ≤ |B|

=⇒ |B|+ 1 ≤ |B|
=⇒ 1 ≤ 0

In contradiction. So f is a surjection, and therefore a bijection, as required.
■

Theorem 1.1.3:

There are n! permutations of a set of cardinality n. That is, |Sn| = n!.

Proof:

We know that every injection from [n] to [n] is a bijection, and vice versa. So Sn is the set of injections from [n] to [n],
of which we proved there are:

n!
(n−n)!

= n!

As required.
■
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Lemma 1.1.4:

If P is a partition of A such that every equivalence class has equal cardinality:

|A| = |P | · p

Where p is the cardinality of an equivalence class.

Proof:

Suppose [a] is an equivalence class of A. Then we know that for every equivalence class [b], there exists a bijection:

f[b] : [a] −→ [b]

Since they have equal cardinalities.
We’ll define a function:

f : P × [a] −→ A

Where:
f ([b],α) = f[b](α)

This is injective since:
f ([b],α) = f ([c],β) =⇒ f[b](α) = f[c](β)

Since the codomain of f[x] is [x], and if [x] , [y] then [x]∩ [y] = ∅ as P is a partition, this means that [b] = [c]. And
since f[b] is a bijection, this means that α = β.
So ([b],α) = ([c],β), which means f is injective.
Now, suppose b ∈ A, then:

f ([b], f −1
[b] (b)) = f[b]

(
f −1

[b] (b)
)

= b

So f is surjective.
This means that f is a bijection.

■

Proposition:

There are (n− 1)! distinct ways to place n people around a circular table.

Proof:

This is the same as asking how many distinct permutations there are if we define the equivalence class of a permuta-
tion σ ∈ Sn by:

[σ ] = {τ ∈ Sn | ∃i ∈ Z : τ(x) = σ (x+ i mod n)}

As x+ i mod n corresponds to a shift of i spots about the table.
We know for all i ∈ Z, x+ i mod n = x+ (i mod n) mod n, and 0 ≤ i mod n < n. So:

[σ ] = {τ ∈ Sn | ∃0 ≤ i < n : τ(x) = σ (x+ i mod n)}

And for every 0 ≤ i , j < n:

x+ i mod n , x+ j mod n =⇒ σ (x+ i mod n) , σ (x+ j mod n)

Therefore:
|[σ ]| = n

By lemma 1.1.4, this means that the number of distinct permutation is:

n!
n

= (n− 1)!

As required.
■
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Theorem 1.1.5:

The number of distinct ways to order k black balls and n− k white ones is:

n!
k! · (n− k)!

Proof:

Let the balls form the sequence {ai}ni=1 where ai is 1 (black) for i ≤ k and 0 (white) for all other ais. We define the
equivalence class between permutations of the n balls:

[σ ] =
{
τ ∈ Sn

∣∣∣ aτ(i) = aσ (i)

}
This represents all the permutations of the balls which give the same ordering as σ . We want to count the number of
distinct permutations there are, which is the number of distinct equivalence classes.
Let:

Aσ B
{
n ≥ i ∈ N1

∣∣∣ aσ (i) = 1
}

And:
Bσ B [n] \Aσ

We will define a bijection:
f : SAσ

× SBσ
−→ [σ ]

Where:
f (σA,σB) = τ

Where τ is defined by:

τ(x) =

σA(x) x ∈ Aσ

σB(x) x ∈ Bσ

We need to show that this is well-defined. Firstly, this is a bijection because Aσ and Bσ are disjoint and σA and σB
are bijections. Suppose i ∈ [n], if i ∈ Aσ then by definition aσ (i) = 1, and aτ(i) = aσA(i), but σA(i) ∈ Aσ , so aσA(i) = 1, as
required. The proof is similar if i ∈ Bσ .
Now, let’s show that f is injective. Suppose:

f (σA,σB) = τ1 = τ2 = f (πA,πB)

This means that for every i ∈ Aσ : τ1(i) = τ2(i), but we know that this just means σA(i) = πA(i), therefore σA = πA.
Similar for B. Since the two sets are finite, this means that f is a bijection.
And we know that the cardinality of Aσ is k (since σ is a bijection and there are k ais which equal 1), and therefore
Bσ has a cardinality of n− k. So:

|σ | = k! · (n− k)!

So by lemma 1.1.4, this means the number of equivalence classes is:

n!
k! · (n− k)!

■

Corollary 1.1.6: (
n
k

)
=

n!
k! · (n− k)!
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Proof:

Let {ai}ni=1 be defined similarly to as it was above. Let P the set of distinct orderings of this set. As per the theorem
above, |P | = n!

k!·(n−k)! . We will construct a bijection:

f : P −→ P k ([n])

We define it like so:
f ([σ ]) =

{
m ∈ [n]

∣∣∣ aσ (m) = 1
}

We know this must have a cardinality of k since there are k ais which are equal to 1, and permutations in the same
equivalence class map the same ais to 1, so the function is well-defined.
Let us prove that f is injective. If f (σ ) = f (τ) then

aσ (m) = 1 ⇐⇒ aτ(m) = 1

Which means that aσ (m) = aτ(m), and therefore [τ] = [σ ], as required.
Now suppose S = {x1, . . . ,xk} ∈ P k ([n]). We can define a permutation like so:

σ (xi) = i

And since |[n] \ S | = n − k, there is a bijection between [n] \ S and {k + 1, . . . ,n}. So we can map the values in [n] \ S
(non-xi values) bijectively to {k + 1, . . . ,n}.
This defines a bijection σ in Sn. Now notice that since ai = 1 only for i ≤ k:{

m ∈ [n]
∣∣∣ aσ (m) = 1

}
= {m ∈ [n] | σ (m) ≤ k} = {x1, . . . ,xk} = S

So:
f ([σ ]) = S

And f is therefore a surjection.
Therefore f is bijective and: (

n
k

)
= |P k ([n])| = |P | =

n!
k! · (n− k)!

As required.
■
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Proposition (Pascal’s Identity): (
n
k

)
=

(
n

n− k

)
This identity is named after Blaise Pascal, one of the pioneers of early probability theory.

Proof:

Note:

This can be proved algebraically, by applying the formula for binomial coefficient which we proved earlier.
But this proof is dry and does not reveal much about the inner nature of the identity.

This is a simple proof. All it requires is a construction of a bijection:

f : P k ([n]) −→ P n−k ([n])

The construction is quite simple and natural:
f (S) = [n] \ S

This is obviously well-defined, and is a bijection since it is its own inverse.
■

Proposition 1.1.7 (Pascal’s Rule): (
n− 1
k

)
+
(
n− 1
k − 1

)
=

(
n
k

)

Proof:

A good look at the proposition reveals what the theorem really means: there is a partition of P k ([n]) into two sets
isomorphic to P k ([n− 1]) and P k−1 ([n− 1]) respectively. So let’s attempt to find (one) of these partitions.
We can define the partition into two sets:

A = {S ∈ P k ([n]) | n ∈ S}

And:
B = P k ([n]) \A = {S ∈ P k ([n]) | n < S}

First, let’s show that A is isomorphic to P k−1 ([n− 1]). Let S ∈ A. We can map it to S \ {n}. This is well-defined since
it has a cardinality of |S | − 1 = k − 1 and is a subset of [n] \ {n} = [n − 1]. Since for every S ∈ A, n ∈ S, this is injective
(since S = S \ {n} ∪ {n}). It is surjective since given S ′ ∈ P k−1 ([n− 1]), S ′ ∪ {n} will be mapped to it.
And B is actually just equal to P k ([n− 1]). This is because if S ∈ B then S ⊆ [n] \ {n} = [n− 1], and S has a cardinality
of k.
And A⊔B = P k ([n]) trivially.
Therefore:

|A|+ |B| = |P k ([n])| =⇒
(
n− 1
k − 1

)
+
(
n− 1
k

)
=

(
n
k

)
As required.

■

Definition 1.1.8:

A multiset in a universe U is a pair:

A = (U,m)
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Where U is a set and m is a function:
m : U −→ N0

This is called A’s multiplicity function and is also denoted mA.
Multisets are a way of representing sets where elements can be repeated a finite number of times. Basically, for every
a in A, m(a) represents how many times a is in the multiset.
LetM (U) be the set of all multisets in the universe U, that is:

M (U)B {(U,m) |m : U −→ N0}

Given a multiset A in a universe U, we define its support to be the set of all elements in A:

supp(A)B {a ∈ U |m(a) > 0}

And we say that a ∈ A if a ∈ supp(A).
We define the cardinality of a finite multiset A (a multiset is finite if its support is):

|A|B
∑

a∈suppA

m(a)

Finally, we define the set of all k-length multisets over U as:

Mk (U) = {A ∈M (U) | |A| = k}

And we define its cardinality to be: ((
|U|
k

))
B |Mk (U)|

This is called the multiset coefficient.

Proposition 1.1.9: ((
n
k

))
=

(
n+ k − 1

k

)

Proof:

So we need to find the cardinality ofMk ([n]).
Firstly, recall that by corollary 1.1.6 the number of distinct orderings of k of one object and n−1 of another is

(n+k−1
k

)
.

So let’s create a bijection from the set of distinct orderings of k one object and n− 1 of another.
These orderings can be uniquely characterized by the indexes of the n− 1 objects, which are the series {pi}n−1

i=1 where
1 ≤ p1 < · · · < pn−1 ≤ n+ k − 1. For simplicity, let’s define p0 B 0 and pn B n+ k.
So now let’s define the bijection:

f
(
{pi}ni=0

)
= ([n],m)

Where for every k ∈ [n]:
m(k) = pk − pk−1 − 1

Let’s prove that this is well-defined. Firstly, pk > pk−1 =⇒ pk − pk−1 − 1 ≥ 0, so m(k) ∈ N0 as required.
Secondly:

n∑
k=1

m(k) =
n∑

k=1

pk − pk−1 − 1 =
n∑

k=1

(pk − pk−1)−n

This is a telescopic sum, which is equal to:

= pn − p0 −n = n+ k −n = k

Which means this multiset has a cardinality of k, as required.
Now, let’s show that f is an injection.
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Suppose:
f
(
{pi}ni=0

)
= f

(
{qi}ni=0

)
That means for every k ∈ [n]:

pk − pk−1 − 1 = qk − qk−1 − 1 =⇒ pk − pk−1 = qk − qk−1

And through simple induction it can be shown that pk = qk (recall that p0 = q0 = 0 for the base).
So f is injective.
Now, suppose ([n],m) ∈Mk ([n]) is a multiset, we can define:

pk B
k∑

i=1

(m(i)) + k

Which is a valid indexing since pk < pk+1, p0 = 0, and pn =
k∑

i=1
m(i) +n = k +n.

And notice that:
pk − pk−1 = m(k) + 1 =⇒ m(k) = pk − pk−1 − 1

Which means that:
f
(
{pi}ni=0

)
= ([n],m)

So every multiset has an origin, therefore f is surjective.
So f is a bijection, which means that: ((

n
k

))
= |Mk ([n])| =

(
n+ k − 1

k

)
As required.

■

Proposition 1.1.10: ((
n
k

))
=

((
k + 1
n− 1

))

Proof:

As shown earlier,Mk ([n]) is isomorphic to the set of orderings of n−1 of one object and k of another. So for instance,
it is isomorphic to the set of orderings of n− 1 black balls and k white balls.
But we can flip which object is which, so this is isomorphic to the orderings of k black balls and n − 1 white balls.
And this is isomorphic by the (proof of the) previous proposition toMn−1 ([k + 1]).
So all in allMk ([n]) is isomorphic toMn−1 ([k + 1]), so:((

n
k

))
=

((
k + 1
n− 1

))
As required.

■

Proposition 1.1.11: ((
n
k

))
=

((
n

k − 1

))
+
((
n− 1
k

))

Proof:
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We will create a partition ofMk ([n]) into subsets which have the required cardinality. The partition which accom-
plishes this is defined as follows:

Mk ([n]) = A⊔B

Where:
AB {M ∈Mk ([n]) | n <M} BB {M ∈Mk ([n]) | n ∈M}

Notice that A =Mk ([n− 1]).
We can define a bijection f from B toMk−1 ([n]) as follows:

f (M) = M̃

Where:

mM̃ (i) =

mM (i) i , n

mM (i)− 1 i = n

This is well-defined because the sum of mM̃ is one less than the sum of mM , which is k. So the sum is k−1, as required.
It is obviously injective, since we have all the necessary knowledge about m in its image.
It is also obviously surjective, since given mM̃ , we can define m like so:

m(i) =

mM̃ (i) i , n

mM̃ (i) + q i = n

So f is a bijection, therefore:

|B| =
((

n
k − 1

))
So all in all we know:

|Mk ([n])| = |A|+ |B| =⇒
((
n
k

))
=

((
n− 1
k

))
+
((

n
k − 1

))
As required.

■
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Theorem 1.1.12:

Given a set A with n elements, the number of ways to choosen k elements from A is:

• If order matters (so choosing a then b is different from choosing b then a) and repition is allowed (we can choose
a twice for example):

nk

• If order matters, but repetition is not allowed:

n!
(n− k)!

• If order doesn’t matter, but repetition is allowed:((
n
k

))
=

(
n+ k − 1

k

)

• If order doesn’t matter, and repetition is not allowed:(
n
k

)

This should give insight as to why what we’ve been discussing is significant.

Proof:

• If order matters and repetition is allowed, then this is just analogous to the number of tuples over A with length
k, this is the set Ak , which has a cardinality of nk .

• If order matters, but repetition is not allowed, then this is just analogous to the number of tuples over A with
length k, but all elements in the tuples are distinct. And tuples are analogous to functions, so this is analogous
to the injective functions from [k] to A, of which there are n!

(n−k)! .

• If order doesn’t matter, and repetition is allowed, then we’re just choosing a multiset of length k from A. And
we know there are

((n
k

))
=

(n+k−1
k

)
of those.

• If order doesn’t matter and repetition is not allowed, then we’re just choosing a set of cardinality k from A, in
other words a k-length subset of A. And we know there are

(n
k

)
of those.

■
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1.2 Multinomials

Definition 1.2.1:

Given a tuple I , [I]i is the element in the i-th position of the tuple.
If I has a size of n, then for a σ ∈ Sn, I define σ (I) as the tuple where:

[σ (I)]i = [I]σ (i)

Lemma 1.2.2:

[(σ ◦ τ)(I)]i = [σ (I)]τ(i)

Proof:

Notice that:
[σ (I)]τ(i) = [I]σ◦τ(i)

And:
[(σ ◦ τ)(I)] = [I]σ◦τ(i)

As required.
■

Lemma 1.2.3:

Suppose S = {s1, . . . , sℓ}.
The number of tuples of length n over S which have ki occurrences of si is:

n!
k1! · · ·kℓ!

(Assuming
ℓ∑

i=1
ki = n)

Proof:

Let:

I =

s1, . . . , s1︸   ︷︷   ︸
k1 times

, . . . , sℓ , . . . , sℓ︸   ︷︷   ︸
kℓ times


All other tuples which satisfy the criteria are permutations of this one.
We define equivalence the equivalence class of σ ∈ Sn as the set of all permutations which produce the same tuple:

[σ ] = {τ ∈ Sn | σ (I) = τ(I)}

We need to find the number of distinct equivalence classes there are. To do so we will find the cardinality of each
equivalence class.
Let:

σj =
{
i ∈ [n]

∣∣∣ [σ (I)]i = sj
}

For j ∈ [ℓ]. This is the set of all indexes in the permuted tuple of the elements sj (notice that [τ] = [σ ] if and only if

σj = τj for evey j). It is important to note that
{
σj

}ℓ
j=1

partitions [n]. If i ∈ [n] then [σ (I)]i = sj for some j (which is

distinct since the sjs are distinct), and therefore i ∈ σj for only that j.
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Since there are kj indexes which equal sj ,
∣∣∣σj ∣∣∣ = kj .

We will construct a bijection:
f : Sσ1

× · · · × Sσℓ −→ [σ ]

by:
f (π1, . . . ,πℓ) = τ

Where τ is defined by:
τ = σ ◦π

If i ∈ [n] then there exists a unique j ∈ [ℓ] such that i ∈ σj . Then we define:

π(i) = πj (i)

π is a bijection since πj is, and therefore so is τ . Notice that if i ∈ σj , then [(σ ◦π)(I)]i = [σ (I)]π(i), and since i ∈ σj ,
then π(i) = πj (i) ∈ σj , so

[(σ ◦π)(I)]i = [τ(I)]i = sj = [σ (I)]i

Which means that τ ∈ [σ ], so f is well-defined.
This function corresponds to taking σ (I) and permuting its indexes as to not mess up their elements.
This is injective since if:

f (π1, . . . ,πℓ) = f (π′1, . . . ,π
′
ℓ)

Then:
σ ◦π = σ ◦π′ =⇒ π = π′

But that means that π(i) = π′(i) for every i, and therefore for every j:

πj (i) = π′j (i)

(For relevant is), and therefore πj = π′j . So f is injective.

This is surjective. If τ ∈ [σ ], then we need to find πjs such that their corresponding π is equal to σ−1 ◦ τ .
Suppose i ∈ σj , we define:

πj (i) = σ−1 ◦ τ(i)

We need to show that this is well-defined. So we must show that σ−1 ◦ τ(i) ∈ σj .

[σ (I)]σ−1◦τ(i) = [I]σ◦σ−1◦τ(i) = [I]τ(i) = [τ(I)]i

And since [τ] = [σ ], this is equal to [σ (I)]i = sj . So:

[σ (I)]σ−1◦τ(i) = sj =⇒ σ−1 ◦ τ(i) ∈ σj

As required.
And since for all relevant i: πj (i) = σ−1 ◦ τ(i), this means π = σ−1 ◦ τ , as required.
So f is a bijection. This means:

|[σ ]| =
∣∣∣Sσ1

∣∣∣ · · · ∣∣∣Sσℓ ∣∣∣ = k1! · · ·kℓ!

By lemma 1.1.4, this the number of distinct permutations is:

n!
k1! · · ·!kℓ!

As required.
■
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Definition 1.2.4:

We define the result of the previous lemma to be something called a multinomial coefficient:(
n

k1, . . . , kℓ

)
=

n!
k1! · · ·kℓ!

If
ℓ∑

i=1
ki = n.

A natural question to ask at this point is why is this called a multinomial coefficient: What is its relation with binomial
coefficients?

Proposition 1.2.5: (
n
k

)
=

(
n

k,n− k

)
(The left side is a binomial coefficient while the right side is a multinomial coefficient.)

Proof:

Notice that
( n
k,n−k

)
represents the number of distinct tuples with k of one element and n − k of another. This is

analogous, equivalent actually, to the number of ways to order k of one element and n − k of another. And as we
discusses in the proof of lemma 1.1.6, this is equal to the cardinality of P k ([n]).
Therefore (

n
k

)
=

(
n

k,n− k

)
As required.

■
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Definition 1.2.6:

Given a tuple I of length n over a set of elements S, I define for every s ∈ S:

#sI B
∣∣∣{i ∈ [n]

∣∣∣ [I]i = s
}∣∣∣

Which is the number of occurrences of s in the tuple I .

Theorem 1.2.7 (The Multinomial Theorem):

 ℓ∑
i=1

ai


n

=
∑

k1+···+kℓ=n

(
n

k1, . . . , kℓ

)
· ak1

1 · · ·a
kℓ
ℓ

This is a generalization of the more famous Binomial Theorem, which we will discuss soon.

Proof:

We know:  ℓ∑
i=1

ai


n

=
ℓ∑

i1=1

ai1 · · ·
ℓ∑

in=1

ain =
ℓ∑

i1=1

· · ·
ℓ∑

in=1

(
ai1 · · ·ain

)
Let I be defined as the tuple:

I B (i1, . . . , in)

We can rewrite the sum as: ∑
I∈[ℓ]n

∏
i∈I

ai

We can partition [ℓ]n like so: for every {ki}ℓi=1 such that
ℓ∑

i=1
ki , create a subset of [ℓ]n defined as follows:

{I ∈ [ℓ]n | ∀j ∈ [ℓ} : #jI = kj ]

These sets are obviously disjoint, and their union is [ℓ]n since for every I ∈ [ℓ]n define kj = #jI .

Suppose S is one of these sets characterized by {ki}ℓi=1. Then for every I ∈ S:∏
i∈I

ai = ak1
1 · · ·a

kℓ
ℓ

Since there are ki instances of i in I .
And we know by the previous lemma that |S | =

( n
k1,...,kℓ

)
. So summing over S gives:(

n
k1, . . . , kℓ

)
ak1

1 · · ·a
kℓ
ℓ

And since S is characterized by and only by {ki}ℓi=1, there are as many sets (S) in the partition as there are sequences

{ki}ℓi=1 such that
ℓ∑

i=1
ki = n.

This means:  ℓ∑
i=1

ai


n

=
∑

k1+···+kℓ

(
n

k1, . . . , kℓ

)
· ak1

1 · · ·a
kℓ
ℓ

As required.
■

Theorem 1.2.8 (The Binomial Theorem):
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(a+ b)n =
n∑

k=0

(
n
k

)
ak · bn−k

Proof:

By the The Multinomial Theorem, this is equal to:

(a+ b)n =
∑

k1+k2=n

(
n

k1, k2

)
ak1 · bk2

But k1 + k2 = n if and only if k2 = n− k1. That is, we can construct a simple bijection from the set of k1, k2s to the set
{0, . . . ,n} (by mapping (k1, k2) to k1).
So instead we can sum over {0, . . . ,n}:

(a+ b)n =
n∑

k=0

(
n

k,n− k

)
ak · bn−k

And by proposition 1.2.5, this is equal to:

(a+ b)n =
n∑

k=0

(
n
k

)
ak · bn−k

As required.
■
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2 Discrete Probability Spaces

2.1 Introduction to Probability Spaces

Definition 2.1.1:

A probability space is a triplet:
(Ω,F ,P)

Where:

• Ω is a set called the sample space. Intuitively it is the set of all outcomes of a trial/experiment.

• F is a subset of P (Ω), and its elements are called events. F must satisfy the following:

• Ω ∈ F

• If {Ai}∞i=1 ∈ F , then
∞⋃
i=1

Ai ∈ F .

• If A ∈ F , then Ω \A ∈ F .

Note:

Note that these requirements also imply that:

• ∅ ∈ F , since ∅ = Ω \Ω.

• And if {Ai}∞i=1 ∈ F then:
∞⋂
i=1

Ai ∈ F

Since this is the complement of the union of the complements of Ai .

• P is the probability function, a function:

P : F −→ [0,∞)

Which satisfies the following:

• P (Ω) = 1

• If {Ai}∞i=1 ∈ F are (pairwise) disjoint, then:

P

 ∞⊔
i=1

Ai

 =
∞∑
i=1

P (Ai)

Note that this is a countably infinite sum.

Proposition 2.1.2:

The following are true:

(1) P (∅) = 0

(2) If {Ai}ni=1 ∈ F are disjoint, then:

P

 n⊔
i=1

Ai

 =
n∑
i=1

P (Ai)

This is different than the requirement on P since the sum is finite here.

(3) If A is a subset of B (and both are events), then P (A) ≤ P (B).

(4) If A is a subsetof B, then P (B \A) = P (B)−P (A)
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(5) If A is an event, then P (A) ∈ [0,1]. This means that P can be thought of as a function to [0,1] instead of as a
function to [0,∞).

(6) P (A) = P (Ac) (complements are relative to Ω).

Proof:

(1) We can define a sequence {Ai}∞i=1 by Ai = ∅. Then they are all pairwise disjoint and their union is also ∅. So:

P (∅) = P

 ∞⊔
i=1

∅

 =
∞∑
i=1

P (∅)

So we get:
∞∑
i=1

P (∅) = 0

Which means that P (∅) = 0 (as otherwise the sum doesn’t converge).

(2) Let’s define an infinite sequence {Bi}∞i=1 like so:
For i ≤ n, we define Bi = Ai . Otherwise, Bi = ∅.

Then {Bi}∞i=1 is still pairwise disjoint and its union is
n⊔
i=1

Ai , so:

P

 n⊔
i=1

Ai

 = P

 ∞⊔
i=1

Bi

 =
∞∑
i=1

P (Bi) =
n∑
i=1

P (Ai) +
∞∑

i=n+1

P (∅) =
n∑
i=1

P (Ai)

As required.

(3) We know that B = A⊔ (B \A), and so:
P (B) = P (A) +P (B \A)

And since P (B \A) ≥ 0, we know P (A) ≤ P (B), as required.

(4) Similar to above, we see:
P (B) = P (A) +P (B \A)

Which means that:
P (B)−P (A) = P (B \A)

As required.

(5) Since we know ∅ ⊆ A ⊆Ω, this means:

P (∅) ≤ P (A) ≤ P (Ω) =⇒ 0 ≤ P (A) ≤ 1

As required.

(6) We know that Ω = A⊔Ac, so:

P (Ω) = P (A) +P (Ac) =⇒ 1 = P (A) +P (Ac)

Which means that P (Ac) = 1−P (A), as required.

■
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2.2 The Basics of Probability Spaces

Note:

Given the sum: ∑
x∈X

f (x)

Where X is potentially uncountable, we define it to be:∑
x∈X

f (x)B
∑

x∈suppf (X)

f (x)

Where suppf (X) is the support of f on X, defined to be:

suppf (X)B {x ∈ X | f (x) , 0}

Note that the sum must still be absolutely convergant, as we’re summing in any order.

Definition 2.2.1:

A probability space (Ω,F ,P) is discrete if there exists a function:

P : Ω −→ [0,1]

Such that for every event A:
P (A) =

∑
ω∈A

P (ω)

Definition 2.2.2:

A (finite) discrete probability space is uniform if for every ω ∈Ω:

P (ω) =
1
|Ω|

Proposition 2.2.3:

If (Ω,F ,P) is a uniform probability space, then:

P (A) =
|A|
|Ω|

Proof:

This is quite simple to prove. Notice:

P (A) =
∑
ω∈A

P (ω) =
∑
ω∈A

1
|Ω|

=
|A|
|Ω|

As required.
■
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Example:

Suppose you live on the planet Ekato-Karpouzia, which has k days in its year.
You’re in a class with n people, what is the probability that at least two of the people in the class have the same
birthday? (Assuming n ≤ k.)
This is called the birthday problem or the birthday paradox, since the probability of this is higher than one would
expect.

Here, we can define Ω to be the set of all functions from [n] to [k], where f (i) gives the birthday of the ith person.
We also know that the probability space must be uniform, since the probability of having one distribution of birth-
days is the same as having another (this isn’t the case in real life, but this is a good enough assumption for us).
Notice that the event that there are at least two people in the class with the same birthday is the complement of the
event that no one in the class shares a birthday with anyone else. This event is the set of all injective functions from
[n] to [k]. We know there are k!

(k−n)! of those, which means the probability that everyone has a different birthday is:

k!
(k −n)! · kn

This is the probability of the complement of our goal event, which means the probability we’re looking for is:

1− k!
(k −n)! · kn

Now suppose that E. Karpouzia has the same number of days in a year as us, 365. That is, k = 365. If this were the
case, even with 50 people, there’d be a probability greater than 0.97.

Theorem 2.2.4 (Law of Total Probability Version One):

If {Ai}i∈I ∈ F is a countable partition of Ω, that is: ⊔
i∈I

Ai = Ω

Then for every event B:
P (B) =

∑
i∈I

P (B∩Ai)

Proof:

Notice that: ⊔
i∈I

B∩Ai = B∩

⊔
i∈I

Ai

 = B∩Ω = B

Which means that:

P (B) = P

⊔
i∈I

B∩Ai


And since I is countable, this is equal to:

=⇒ P (B) =
∑
i∈I

P (B∩Ai)

As required.
■

Example:

An n-sided die and a k-sided die are rolled. What is the probability the result of the n-sided die is less than that of
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the k-sided die?

In this case, Ω = [n]× [k], where (x,y) ∈Ω corresponds to a result of x on the n-sided die and y on the k-sided die.
The event we’re trying to compute a probability for is:

B = {(x,y) ∈Ω
∣∣∣ x < y}

Let’s define for a ∈ [k]:
Aa = [n]× {a} = {(x,a) ∈Ω}

Thus:

P (B) =
k∑

a=1

P (B∩Aa)

B ∩ Aa = {(x,a) | x < a}, which means that |B∩Aa| = a − 1 (as there are a − 1 choices for x). Since the probability is
uniform (the probability of rolling any two numbers is equal), this means:

P (B∩Aa) =
|B∩Aa|
|Ω|

=
a− 1
n · k

Therefore:

P (B) =
k∑

a=1

a− 1
n · k

=
1
nk
·
k−1∑
a=0

a =
1
nk
· k

2
· (k − 1) =

k − 1
2n

Lemma 2.2.5:

If {Ai}ni=1 are events, then:

P

 n⋃
i=1

Ai

 ≤ n∑
i=1

P (Ai)

Proof:

We can prove this through induction on n = 1. The base case for n = 1 is trivial. We will also prove it for n = 2.
Base case n = 2:
Notice that:

P (A1 ∪A2) = P (A1 ⊔ (A2 \A1)) = P (A1) +P (A2 \A1)

And since A2 \A1 is a subset of A2, its probability is less than the probability of A2. So we get:

P (A1 ∪A2) = P (A1) +P (A2 \A1) ≤ P (A1) +P (A2)

As required.
Inductive step:
Suppose the hypothesis is true for n. Let {Ai}n+1

i=1 be events. Then:

P

n+1⋃
i=1

Ai

 = P


 n⋃
i=1

Ai

∪An+1


And as we proved for n = 2, this is less than:

≤ P

 n⋃
i=1

Ai

+P (An+1)

And by our inductive hypothesis, P
(

n⋃
i=1

Ai

)
≤

n∑
i=1

P (Ai), so this is less than:

≤
n∑
i=1

P (Ai) +P (An+1) =
n+1∑
i=1

P (Ai)
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As required.
■

Definition 2.2.6:

A sequence of sets {Ai}∞i=1 is increasing if for every n ∈ N1, An is a subset of An+1. And it is decreasing if for every
n ∈ N1, An is a superset of An+1.

Theorem 2.2.7:

If {Ai}∞i=1 is increasing, then:

P

 ∞⋃
n=1

An

 = lim
n→∞

P (An)

Proof:

Let’s define Bn B An \An−1.

Claim:

{Bn}∞n=1 is pairwise disjoint.
Suppose ω ∈ Bn, then ω < An−1. Since {Ai}∞i=1 is increasing, this means that for every k < n, we know ω < Ak . And
since Bk ⊆ Ak , this means that for every k < n, ω < Bk .
Suppose that for some k > n, ω ∈ Bk . But this would mean ω < Bn (by above), which is a contradiction.
So for every k , n : ω < Bk . So {Bn}∞n=1 is disjoint.

Claim:

n⊔
k=1

Bk = An

Suppose ω ∈
⊔

Bk , then there exists some k ≤ n such that ω ∈ Bk . And since Bk ⊆ Ak , this means ω ∈ Ak .
Now suppose ωAn. There must be some k such that ω ∈ Ak and ω < Ak−1 (take k = min {m ≤ n |ω ∈ Am}). This
means ω ∈ Ak \Ak−1 = Bk , and k ≤ n, so ω ∈

⊔
Bk .

So an element is in one union if and only if it is in An, and therefore they are equal.

It follows that:
∞⊔
n=1

Bn =
∞⋃
n=1

An

Since:
∞⋃
n=1

An =
∞⋃
n=1

n⊔
k=1

Bk =
∞⊔
n=1

Bk

So:

P

 ∞⋃
n=1

An

 = P

 ∞⊔
n=1

Bn

 =
∞∑
n=1

P (Bn)

Now recall that by definition:
∞∑
k=1

P (Bk) = lim
n→∞

n∑
k=1

P (Bk) = lim
n→∞

P

 n⊔
k=1

Bk


And by our previous claim, this is equal to:

= lim
n→∞

P (An)

As required.
■
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Corollary 2.2.8:

If {Ai}∞i=1 are events which are decreasing, then:

P

 ∞⋂
n=1

An

 = lim
n→∞

P (An)

Proof:

Notice that since An ⊇ An+1, we know that Ac
n ⊆ Ac

n+1, so
{
Ac
i

}∞
i=1

is an increasing sequence. Furthermore:

∞⋂
n=1

An =

 ∞⋃
n=1

Ac
n

c
So:

P

 ∞⋂
n=1

An

 = 1−P

 ∞⋃
n=1

Ac
n


And since

{
Ac
i

}∞
i=1

is increasing, by the above theorem:

= 1− lim
n→∞

P (Ac
n) = lim

n→∞
1−P (Ac

n) = lim
n→∞

P (An)

As required.
■

Note:

These two theorems will become very important in the future when we discuss general probability spaces. So keep
them in mind.
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Theorem 2.2.9:

If I is countable then:

P

⋃
i∈I

Ai

 ≤∑
i∈I

P (Ai)

Proof:

We already proved the finite case in lemma 2.2.5, so all that remains is to prove the countably finite case. That is, we
need to prove:

P

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

P (An)

Let:

Bn B
n⋃

k=1

Ak

Then {Bn}∞n=1 is increasing, and:
∞⋃
n=1

Bn =
∞⋃
n=1

An

So by the previous theorem:

P

 ∞⋃
n=1

An

 = P

 ∞⋃
n=1

Bn

 = lim
n→∞

P (Bn) = lim
n→∞

P

 n⋃
k=1

Ak


And by lemma 2.2.5:

P

 n⋃
k=1

Ak

 ≤ n∑
k=1

P (Ak)

So:

lim
n→∞

P

 n⋃
k=1

Ak

 ≤ lim
n→∞

n∑
k=1

P (Ak) =
∞∑
n=1

P (An)

Which means that all in all:

P

 ∞⋃
n=1

An

 ≤ ∞∑
n=1

P (An)

As required.
■
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2.3 The Inclusion-Exclusion Principle

Theorem 2.3.1 (The Inclusion-Exclusion Principle):

If {Ai}ni=1 are events, for every I ≤ [n], let:
AI B

⋂
i∈I

Ai

Then:

P

 n⋃
i=1

Ai

 =
∑

∅,I⊆[n]

(−1)|I |+1 ·P (AI )

Proof:

We will prove this through induction on n.
First base case: If n = 1, this is trivial.
Second base case: If n = 2, then notice that:

A∪B = (A \B)⊔B

And we know that A \B = A \ (A∩B), and since A∩B is a subset of A:

P (A \B) = P (A)−P (A∩B)

So all in all we get:
P (A∪B) = P (A \B) +P (B) = P (A) +P (B)−P (A∩B)

As required.
Inductive step: Suppose this is true for n, then let {Ai}n+1

i=1 be events. We know:

P

n+1⋃
i=1

Ai

 = P


 n⋃
i=1

Ai

∪An+1


Which is equal to, by our second base case:

= P

 n⋃
i=1

Ai

+P (An+1)−P

 n⋃
i=1

Ai ∩An+1


If we let Bi B Ai ∩An+1, notice that for every ∅ , I ⊆ [n]:

BI =
⋂
i∈I

Ai ∩An+1 = An+1 ∩
⋂
i∈I

Ai = An+1 ∩AI

So by our inductive hypothesis, this is equal to:

=
∑

∅,I⊆[n]

(−1)|I |+1P (AI ) +P (An+1)−
∑

∅,I⊆[n]

(−1)|I |+1P (An+1 ∩AI )

Notice that:
P (An+1)−

∑
∅,I⊆[n]

(−1)|I |+1P (An+1 ∩AI ) =
∑
I⊆[n]

(−1)|I∪{n+1}|+1P
(
AI∪{n+1}

)
Since (−1)|I∪{n+1}|+1 = −1|I |+1 (so we’re rewritting the minus before the sum), and when I = ∅, the element in the sum
is just:

(−1)|{n+1}|+1 ·P
(
A{n+1}

)
= P (An+1)

So we entered An+1 into the sum.
And this, in turn, is just equal to: ∑

I⊆[n+1]
n+1∈I

(−1)|I |+1 ·P (AI )
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So, we get:

P

 n⋃
i=1

Ai

 =
∑

∅,I⊆[n]

(−1)|I |+1 ·P (AI ) +
∑

I⊆[n+1]
n+1∈I

(−1)|I |+1 ·P (AI )

The first sum is summing over ∅ , I ⊆ [n+ 1] where n+ 1 < I , and the second is summing over ∅ , I ⊆ [n+ 1], where
n+ 1 ∈ I . So they form a reordering of the sum of ∅ , I ⊆ [n+ 1], so their sum is equal to:

=
∑

∅,I⊆[n+1]

(−1)|I |+1 ·P (AI )

As required.
■

Note:

This is called the Inclusion-Exclusion Principle since we first add the probabilities of the events, then subtract the
probabilities we double-counted (the intersections), then add back the probabilities which we double-counted in the
previous step, and so on.
So this is a process of including, and then excluding.

Corollary 2.3.2:

If {Ai}ni=1 are finite sets, then: ∣∣∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣∣∣ =
∑

∅,I⊆[n]

(−1)|I |+1 · |AI |

Proof:

Let ΩB
n⋃
i=1

Ai , and we define:

P (ω) =
1
|Ω|

Thus if we define for every A ⊆Ω:
P (A) =

∑
ω∈A

P (ω)

(Ω,PΩ,P) forms a uniform probability space, so:

P (A) =
|A|
|Ω|

This means that:

P

 n⋃
i=1

Ai

 =

∣∣∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣∣∣
|Ω|

But we know by the The Inclusion-Exclusion Principle that:

P

 n⋃
i=1

Ai

 =
∑

∅,I⊆[n]

(−1)|I |+1 ·P (AI ) =
∑

∅,I⊆[n]

(−1)|I |+1 · |AI |
|Ω|

Which means that: ∣∣∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣∣∣
|Ω|

=
∑

∅,I⊆[n]

(−1)|I |+1 · |AI |
|Ω|
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And multiplying both sides by |Ω| gives: ∣∣∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣∣∣ =
∑

∅,I⊆[n]

(−1)|I |+1 · |AI |

As required.
■

Using the inclusion-exclusion principle, we can prove some pretty nifty stuff.

Example:

How many permutations of [n] are there which have no stable points? (A point i is a stable point if σ (i) = i.)

We can start by asking the inverse of this question:
“How many permutations of Sn are there with at least 1 stable point?”

Which we can answer using inclusion-exclusion.
Let A be the set of all permutations in Sn with no stable points. That is:

AB {σ ∈ Sn | ∀i ∈ [n} : σ (i) , i]

So we’re going to try and find the cardinality of Ac instead:

Ac = {σ ∈ Sn | ∃i ∈ [n} : σ (i) = i]

We can then define the set Bi to be the set of all permutations where i is a stable point:

∀i ∈ [n] : Bi B {σ ∈ Sn | σ (i) = i}

This means that:

Ac =
n⋃
i=1

Bi

Notice that for an indexing set I ⊆ [n] the cardinality of BI , where BI is defined as:

BI B
⋂
i∈I

Bi

Is equal to (n− |I |)!. This is because we can create a simple bijection from S[n]\I to BI . Finding this bijection is simple
and left as an exercise to the reader.
So, by inclusion-exclusion:

|Ac | =
∑

∅,I⊆[n]

(−1)|I |+1 · |BI |

We can partition this into sums summing over cardinalities of I :

=
n∑

k=1

∑
I⊆[n]
|I |=k

(−1)k+1 · |BI | =
n∑

k=1

∑
I⊆[n]
|I |=k

(−1)k+1 · (n− k)!

And since there are
(n
k

)
subsets of [n] of cardinality k, this is equal to:

=
n∑

k=1

(−1)k+1
(
n
k

)
· (n− k)!

And notice that
(n
k

)
· (n− k)! = n!

k! , so this is equal to:

= n! ·
n∑

k=1

(−1)k+1

k!
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Since |A| = |Sn| − |Ac | = n!− |Ac |, this means that:

|A| = n!−n! ·
n∑

k=1

(−1)k+1

k!
= n! ·

1−
n∑

k=1

(−1)k+1

k!


Notice that:

1−
n∑

k=1

(−1)k+1

k!
= 1 +

n∑
k=1

(−1)k

k!
=

n∑
k=0

(−1)k

k!

So we have that:

|A| = n! ·
n∑

k=0

(−1)k

k!

Note:

Notice that:
|A|
n!

=
n∑

k=0

(−1)k

k!

This is equal to the probability of uniformly choosing a permutation with no stable points from Sn.
This probability has the interesting property that:

lim
n→∞

|A|
n!

=
∞∑
k=0

(−1)k

k!

Which is the Taylor Series of ex at x = −1! So:

lim
n→∞

|A|
n!

= e−1 =
1
e

Which means that as you increase n, the probability of choosing a permutation with no stable points approaches 1
e .

This won’t be the last time you see e in probability. . .

Example:

Let’s continue on the same thought as the previous example, but generalizing a bit. How many permutations with
exactly k stable points are there?

We could solve this in a similar fashion to the previous example, but what would doing the same thing again really
achieve?
Instead, let’s use the previous example to solve this one.
Let A be the set of all permutations with exactly k stable points, and let for all I ⊆ [n], BI be the set of all permutations
where every i ∈ I is a stable point and every i < I is not:

BI B {σ ∈ Sn | ∀i ∈ I : σ (i) = i ∧ ∀i < I : σ (i) , i}

Notice that for every I , J ⊆ [n], BI and BJ are disjoint. Furthemore, notice that:

A =
⊔
I⊆[n]
|I |=k

BI

So now the question boils down to finding the cardinality of BI .
Let C be the set of all permutations of [n− k] which have no stable points. By our previous example, we know that

|C| = (n− k)! ·
n−k∑
i=0

(−1)i

i!
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Furthermore, we can construct a bijection from BI to C:

f : BI −→ C

Since |I | = k, there exists a bijection gI from [n− k] to Ic. So we can define:

f (σ ) = τ

Where for every m ∈ [n− k]:
τ(m) = g−1

I (σ (gI (m)))

(This just means f (σ ) = g−1
I ◦ σ ◦ gI if we ignore domains and codomains.)

This is well defined since gI (m) ∈ Ic, and since σ ∈ BI , every element of Ic is not a stable point, so:

σ (gI (m)) , gI (m)

And since g−1
I is bijective, and therefore injective, this means:

τ(m) = g−1
I (σ (gI (m))) , g−1

I (gI (m)) = m

So for every m ∈ [n− k]:
τ(m) ,m

Which means that τ has no stable points, so m ∈ C.
Also note that since gI (m) < I , this means that σ (gI (m)) < I as well (since if it were in I , since σ is a permutation, it’d
have to be a stable point), so we can take the g−1

I of that.
This is also obviously injective since if:

f (σ ) = f (π) =⇒ g−1
I ◦ σ ◦ gI = g−1

I ◦π ◦ gI =⇒ σ = π

And if τ ∈ C, then for every i < I , we can define σ (i) = gI ◦τ ◦g−1
I (i), and if i ∈ I , then σ (i) = i. This is in BI since every

i ∈ I is a stable point and:
gI ◦ τ ◦ g−1

I (i) = i ⇐⇒ τ ◦ g−1
I (i) = g−1

I (i)

Which is false since τ ∈ C, so it has no stable points.
Thus

|BI | = |C|

And so:

|A| =
∑
I⊆[n]
|I |=k

|BI | =
∑
I⊆[n]
|I |=k

|C| =
(
n
k

)
· |C| =

(
n
k

)
· (n− k)! ·

n−k∑
i=0

(−1)i

i!
=
n!
k!
·
n−k∑
i=0

(−1)i

i!

Note:

Similarly, here if you look at:

|A|
n!

=
1
k!
·
n−k∑
i=0

(−1)i

i!

This is the probability of choosing a permutation with exactly k stable points from Sn.
And its limit as n approaches infinity is:

lim
n→∞

|A|
n!

=
1
k!
·
∞∑
i=0

(−1)i

i!
=

1
k!
· e−1 =

1
k! · e

Yet another example of the usage of the inclusion-exclusion principle arises in number theory.

Definition:
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The Euler Totient Function is a function:
ϕ : N1 −→ N1

Where ϕ(n) is equal to the number of numbers in [n] which are coprime with n.
(Two numbers are coprime if they share no common divisior: in other words, if their greatest common divisor is 1.)

The Euler Totient Function has many uses in number theory, and has some very interesting properties which won’t be
covered here.

Lemma:

n∏
k=1

(ak + bk) =
∑
I⊆[n]

∏
i∈I

ai ·
∏
i<I

bi

Proof:

This can be shown simply using some combinatorics. By writing out the product, see that:

n∏
k=1

(ak + bk) = (a1 + b1) · (a2 + b2) · · · (an + bn)

We can expand this product by choosing from each parentheses ak or bk and multiplying all these choices together.
Let I be the set of indexes for the parentheses where we chose ai (so for a1 ·a2 ·an, I = {1,2,n}) so Ic is the set of indexes
where we chose bi .
For every I like this, the coefficient we are adding to the sum is:∏

i∈I
ai ·

∏
i<I

bi

Any subset I ⊆ [n] is a valid choice, so we can sum over I ⊆ [n]:

n∏
k=1

(ak + bk) =
∑
I⊆[n]

∏
i∈I

ai ·
∏
i<I

bi

As required.

Note:

This isn’t really a rigorous proof, a rigorous proof can be done simply with induction. But the purpose of this is not
to talk about induction, rather combinatorics and probability. Therefore, the “rigorous” proof of this lemma is left as
an exercise to the reader.

Example:

Suppose n = pk1
1 · · ·p

kt
t where pi is prime. Then:

ϕ(n) = n ·
t∏

i=1

(
1− 1

pi

)
In other words:

ϕ(n) = n ·
∏
p|n

(
1− 1

p

)

I highly urge you to try and prove this yourself, it provides a good example of how studying probability can be useful in
other fields, and not just with things related to probability.
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Let’s define:
AB {m ∈ [n] | gcd(n,m) = 1}

So ϕ(n) = |A|. (gcd(n,m) is the greatest common divisor of n and m, so gcd(n,m) = 1 means that n and m are coprime.)
Now let’s look at A’s complement: the set of all numbers which share a divisior with n. This is true if and only if they
are divisible by some qi . So:

Ac = {m ∈ [n] | ∃i : qi |m}

Now, we can define forall 1 ≤ i ≤ t:
Bi B {m ∈ [n] | qi | n}

So:

Ac =
t⋃

i=1

Bqi

Which means that by the inclusion-exclusion principle:

|Ac | =
∑

∅,I⊆[n]

(−1)|I |+1 · |BI |

So what is the cardinality of BI? Well, we know that:

BI = {m ∈ [n] | ∀i ∈ I : qi |m}

And since qi are all prime, every qi divides m if and only if the product of qi over I divides m, so:

BI =

m ∈ [n]

∣∣∣∣∣∣∣
∏
i∈I

qi

 |m


So BI is all the multiples of
∏
i∈I

qi in [n]:

BI =

k ·∏
i∈I

qi ∈ [n]

∣∣∣∣∣∣∣ k ∈ N1


And recall that

∏
i∈I

qi divides n, since the prime factorization of n includes every qi . This means that:

|BI | =
n∏
i∈I qi

(Since there are these many choices for k. Alternatively, just build a bijection from
[

n∏
qi

]
to BI . This bijection is simple

and is again, left as an exercise to the reader.)
So we have that:

|Ac | = n ·
∑

∅,I⊆[n]

(−1)|I |+1∏
i∈I qi

And so:

|A| = n−n ·
∑

∅,I⊆[n]

(−1)|I |+1∏
i∈I qi

= n

1−
∑

∅,I⊆[n]

(−1)|I |+1∏
i∈I qi

 = n ·
∑
I⊆[n]

(−1)|I |∏
i∈I qi

(Since the empty product is equal to 1.)
Now, notice that this is equal to:

n ·
∑
I⊆[n]

∏
i∈I

(
− 1
qi

)
= n ·

∑
I⊆[n]

∏
i∈I

(
− 1
qi

)
·
∏
i<I

1

Which, by our lemma above, is equal to:

n ·
t∏

i=1

(
1− 1

qi

)
As required.
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2.4 Conditional Probability and Independence

A lot of probability questions are in the form of “What is the probability of X if Y?” So we want to try and formulate this
question mathematically.
The idea is that if we know Y (where Y is some event), then we can think of Y as the new sample space. Then the
probability of X would be the probability of X ∩Y divided by the probability of Y .
The rationale behind this may become more clear with the following illustration:

Ω

Y XX ∩Y

We want to focus our attention on X ∩Y within Y .

Definition 2.4.1:

If (Ω,F ,P) is a probability space, and B is an event in F such that P (B) > 0, we define the conditional probability
function of B to be a function:

P ( · | B) : F −→ [0,1]

Where P (A | B) is defined as:

P (A | B)B
P (A∩B)
P (B)

Another notation for P (A | B) is PB (A).

Proposition 2.4.2 (Baye’s Law):

P (A | B) = P (B | A) · P (A)
P (B)

Proof:

This is quite simple, notice:

P (A | B) =
P (A∩B)
P (B)

=
P (A∩B)
P (A)

· P (A)
P (B)

= P (B | A) · P (A)
P (B)

As required.
■

Theorem 2.4.3 (Law of Total Probability Version Two):

If {Ai}i∈I ∈ F is a countable partition of Ω, and for every i ∈ I , P (Ai) > 0, then for every event B ∈ F :

P (B) =
∑
i∈I

P (B | Ai) ·P (Ai)

Proof:

By the Law of Total Probability Version One, we know:

P (B) =
∑
i∈I

P (B∩Ai)
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And since P (B∩Ai) = P (B | Ai) ·P (Ai), we see:

P (B) =
∑
i∈I

P (B | Ai) ·P (Ai)

As required.
■

Lemma 2.4.4:

If A, B, and C are events, such that P (B) ,P (C) > 0, then:

P (A | B | C) = P (A | B∩C)

Proof:

We know:

P (A | B | C) = PC (A | B) =
PC (A∩B)
PC (B)

=
P (A∩B∩C) / P (C)
P (B∩C) / P (C)

=
P (A∩B∩C)
P (B∩C)

And on the other hand, we know:

P (A | B∩C) =
P (A∩B∩C)
P (B∩C)

As required.
■

Theorem 2.4.5:

If {Ai}ni=1 ∈ F are events, then:

P

 n⋂
i=1

Ai

 =
n∏
i=1

P

Ai

∣∣∣∣∣∣∣∣
i−1⋂
j=1

Aj


This is the mathematical concept behind the commonly taught “tree method” for computing the probability of inter-
sections.
When i = 1, we must define

⋂i−1
j=1Aj = Ω, since conditional probability is not defined on ∅, as it has zero probability.

Proof:

We will prove this through induction on n.
Base case: n = 1.
Then the product is equal to simply:

P (A1 |Ω) = P (A1)

As required.
Base case: n = 2
So we need to show that:

P (A1 ∩A2) = P (A1) ·P (A2 | A1)

And this is true by the definition of conditional probability.
Inductive step: We know:

P

n+1⋂
i=1

Ai

 = P

n−1⋂
i=1

Ai ∩ (An ∩An+1)


Which is equal to, by our inductive hypothesis:

=
n−1∏
i=1

P

Ai

∣∣∣∣∣∣∣∣
i−1⋂
j=1

Aj

 ·P
An ∩An+1

∣∣∣∣∣∣∣∣
n−1⋂
j=1

Aj





2.4. Conditional Probability and Independence 35

And by our base case for n = 2, we know that:

P

An ∩An+1

∣∣∣∣∣∣∣∣
n−1⋂
j=1

Aj

 = P

An

∣∣∣∣∣∣∣∣
n−1⋂
j=1

Aj

 ·P
An+1

∣∣∣∣∣∣∣∣ An

∣∣∣∣∣∣∣∣
n−1⋂
j=1

Aj


= P

An

∣∣∣∣∣∣∣∣
n−1⋂
j=1

Aj

 ·P
An+1

∣∣∣∣∣∣∣∣
n⋂

j=1

Aj


So all in all:

P

n+1⋂
i=1

Ai

 =
n−1∏
i=1

P

Ai

∣∣∣∣∣∣∣∣
i−1⋂
j=1

Aj

 ·P
An

∣∣∣∣∣∣∣∣
n−1⋂
j=1

Aj

 ·P
An+1

∣∣∣∣∣∣∣∣
n⋂

j=1

Aj


And this is just equal to:

=
n+1∏
i=1

P

Ai

∣∣∣∣∣∣∣∣
i−1⋂
j=1

Aj


As required.

■

Definition 2.4.6:

Two events, A and B, are independentif P (A∩B) = P (A) ·P (B).
This is denoted as A B.

It is worth noting that independence is symmetric: if A and B are independent, B and A are independent. This is because
intersection and multiplication is commutative.

Proposition 2.4.7:

The following are equivalent:

(1) A and B are independent.

(2) P (A | B) = P (A)

(3) P (B | A) = P (B)

Proof:
(1 =⇒ 2) We know that:

P (A | B) =
P (A∩B)
P (B)

=
P (A) ·P (B)

P (B)
= P (A)

As required.

(2 =⇒ 3) By Baye’s Law we know:

P (B | A) = P (A | B) · P (B)
P (A)

= P (A) · P (B)
P (A)

= P (B)

As required.

(3 =⇒ 1) We know:

P (B) =
P (B∩A)
P (A)

=⇒ P (A∩B) = P (A) ·P (B)

Which means A and B are independent, as required.

■



2.4. Conditional Probability and Independence 36

Proposition 2.4.8:

(1) If P (A) is equal to 0 or 1 if and only if for every B ∈ F , A B.

(2) An event A is independent of every every event if and only if it is independent of itself.

(3) If A and B are disjoint events with non-zero probability, they are not independent.

(4) If A is a subset of B, P (A) , 0, and P (B) , 1, then A and B are not independent.

(5) If A and B are independent, so are Ac and B.

Proof:
(1) ( =⇒ ) Suppose P (A) = 0. Since A∩B ⊆ A, that means P (A∩B) ≤ P (A) = 0, so P (A∩B) = 0. And since P (A)·P (B) =

0 ·P (B) = 0, P (A∩B) = P (A) ·P (B), as required.
Now suppose P (A) = 1. We know then that P (Ac) = 0. We also know that:

P (A∩B) = 1−P (Ac ∪Bc)

By the union bound, P (Ac ∪Bc) ≤ P (Ac) + P (Bc) = P (Bc). But on the other hand, since Bc ⊆ Ac ∪ Bc, P (Bc) ≤
P (Ac ∪Bc), so P (Ac ∪Bc) = P (Bc).
Therefore:

P (A∩B) = 1−P (Bc) = P (B) = P (A) ·P (B)

As required.
(⇐= ) Since A is independent of every event, it must be independent of itself, so:

P (A) = P (A∩A) = P (A)2

This means that P (A) is equal to 0 or 1, as required.

(2) As shown in the above proof, A is independent of itself if and only if P (A) is 0 or 1. And by above, this is
equivalent to A being independent of every event.

(3) Since A∩B = ∅, P (A∩B) = 0. But P (A) ,P (B) > 0, so P (A) ·P (B) , 0, so A and B are dependent.

(4) Since A ⊆ B, P (A∩B) = P (A). This equal to P (A) ·P (B) if and only if P (A) = 0 or P (B) = 1, which they don’t.

(5) We know
P (Ac ∩B) = P (B)−P (A∩B) = P (B)−P (A) ·P (B) = P (B) (1−P (A)) = P (Ac) ·P (B)

As required.

Note:

Using this, we can show that A B, Ac B, A Bc, and Ac Bc are all equivalent.

Definition 2.4.9:

A set of events, {Ai}ni=1 is independent if for every set I ⊆ [n]:

P (AI ) =
∏
i∈I

P (Ai)

(Recall that AI =
⋂
i∈I

Ai .)

And for an arbitrary indexing set I , {Ai}i∈I is independent if for every finite subset J ⊂ I ,
{
Aj

}
j∈J

is independent.

Proposition 2.4.10:
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Suppose {Ai}∞i=1 is independent, then:

P

 ∞⋂
i=1

Ai

 =
∞∏
i=1

P (Ai)

Proof:

Let:

Bm B
m⋂
i=1

Am

Which means that:
∞⋂

m=1

Bm =
∞⋂

m=1

Am

Furthermore, we know that Bm must be decreasing as Bm+1 = Bm∩Am+1. Therefore, by theorem 2.2.7, we know that:

lim
m→∞

P (Bm) = P

 ∞⋂
i=1

Bi


And by the definition of Bm, this means

lim
m→∞

P

 m⋂
i=1

Ai

 = P

 ∞⋂
i=1

Ai


Since {Ai}∞i=1 is independent:

lim
m→∞

P

 m⋂
i=1

Ai

 = lim
m→∞

m∏
i=1

P (Ai) =
∞∏
i=1

P (Ai)

So:

P

 ∞⋂
i=1

Ai

 =
∞∏
i=1

P (Ai)

As required.
■

Definition 2.4.11:

Suppose {Bi}ni=1 is a set of events, and A is some other event. We say that A is independent of {Bi}ni=1 if for every set
I ⊆ [n], A and BI are independent.

Proposition 2.4.12:

Suppose {Ai}ni=1 is a set of events. Then {Ai}ni=1 is independent if and only if every Aj is independent of {Ai}ni=1 \
{
Aj

}
.

Proof:

( =⇒ ) Let I ⊆ [n] such that j < I . We must show that Aj and AI are independent. We know that:

P
(
Aj ∩AI

)
= P

(
AI∪{j}

)
=

∏
i∈I

P (Ai) ·P
(
Aj

)
= P (AI ) ·P

(
Aj

)
As required.
(⇐= ) Suppose I = {i1, . . . , ik} ⊆ [n]. Then:

P (AI ) = P
(
Ai1 ∩AI\{i1}

)
Since Ai1 is independent of AI\{i1}, this is equal to:

= P
(
Ai1

)
·P

(
AI\{i1}

)
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And then using induction on the size of I , we get that this is equal to:

= P
(
Ai1

)
·

∏
i∈I\{i1}

P (Ai) =
∏
i∈I

P (Ai)

So {Ai}ni=1 is independent.
■

Definition 2.4.13:

A set {Ai}ni=1 is pairwise independent if for every relevant i , j, Ai and Aj are independent.

Note:

If a set is independent, it is also pairwise independent. This is since you can take the set {i, j}.
But the reverse is not true. This can be demonstrated with the following example:
Suppose we flip a coin k times, where k is odd. Our sample space Ω will be the set of all vectors x ∈ [0,1]k which
correspond to the result of the flips (xi is the result of the ith flip, 1 is heads, etc.). Let’s define the following events
for all i ∈ [k]:

Ai = {x ∈Ω | xi = 1}

And:

B =

x ∈Ω
∣∣∣∣∣∣∣

k∑
i=1

xi ≡ 0 (mod 2)


(Ai is the event that the ith flip resulted in heads, B is the event that there is an even amount of heads.)
Notice that the probability of Ai and the probability of B are both 1

2 (by symmetry), and:

Ai ∩B = {x | x1 + · · ·+ xi−1 + 1 + xi+1 · · ·+ xk ≡ 0 (mod 2)} =

x
∣∣∣∣∣∣∣∣∣∣∣
∑
j=1
j,i

xj ≡ 1 (mod 2)

∩ {x | xi = 1}

Both of these events are independent and have probability 1
2 , so the probability P (Ai ∩B) = 1

4 . So Ai and B are inde-
pendent. Furthermore, Ai and Aj are independent (this is trivial). So the set {A1, . . . ,Ak ,B} is pairwise independent.
But:

A[k] ∩B =

x
∣∣∣∣∣∣∣ ∀i ∈ [k] : xi = 1,

k∑
i=1

xi ≡ 0 (mod 2)

 = {x | xi = 1, k ≡ 0 (mod 2)}

But since k is odd, k . 0 (mod 2), so the set is the empty set and therefore has probability 0. But Ai and B don’t, so
{A1, . . . ,Ak ,B} is not independent.
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2.5 Discrete Random Variables

Often times it will be tricky, unintuitive, and just downright unhelpful to work with a plain probability space. It can
be hard to figure out exactly how you want to construct your probability space, and you’ll probably end up using lots
of annoying and incomprehensible notation in order to make a point. Fortunately, probability theory offers a sort of
abstraction from the notion of a probability space. This abstraction comes in the form of something called a random
variable.

Definition 2.5.1:

A random variable over a probability space (Ω,F ,P) is a function:

X : Ω −→ R

Note:

There’s actually a bit more nuance to this definition, but we’ll return to it when we cover general probability spaces.

Of course the introduction of random variables as functions should be of no surprise. Mathematicians just love functions.
It makes them wet.
But why is it called a random variable? After all it’s hardly a variable, it’s a function for god’s sake! Well think of it this
way: suppose we have a clinical test where we want to know the number of patients who survived. We can call this a
variable X, and we can play around with it like it’s a variable, but it’s not a constant! It is actually a function, where
given some result of the test ω, it gives us the number of survivors. This is a function. So while on the surface a random
variable seems like a variable, and in fact it is helpful to think of them as variables in many cases, they are far from being
constants (though they can be, just like how there are constant functions).

Definition 2.5.2:

The probability distribution of a random variable X is a function:

PX : P (R) −→ [0,1]

Defined like so:
PX (S) = P ({ω ∈Ω} | X(ω) ∈ S)

This is the probability that X is in the set S.
Many times there are special cases of this, like P (X ≤ a) is the probability that X is less than 5, etc. Of course, this is
all notational.

Proposition 2.5.3:

For every random variable X over the probability space (Ω,F ,P), (R,P (R) ,PX ) is a probability space.

Proof:

We need to show firstly that PX (R) = 1. This is trivial since:

PX (R) = P ({ω ∈Ω} | X(ω) ∈ R)

But every ω satisfies that X(ω) ∈ R, so this is equal to P (Ω) = 1.
Now suppose {Ai}∞i=1 ∈ P (R) are disjoint. Then:

PX

 ∞⊔
i=1

Ai

 = P

{ω ∈Ω}
∣∣∣∣∣∣∣ X(ω) ∈

∞⊔
i=1

Ai


But notice that: ω ∈Ω

∣∣∣∣∣∣∣ X(ω) ∈
∞⊔
i=1

Ai

 =
∞⊔
i=1

{ω ∈Ω | X(ω) ∈ Ai}
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So this is equal to:

= P

 ∞⊔
i=1

{ω ∈Ω | X(ω) ∈ Ai}

 =
∞∑
i=1

P ({ω ∈Ω | X(ω) ∈ Ai}) =
∞∑
i=1

PX (Ai)

As required.
■

Definition 2.5.4:

A random variable X is discrete if its probability distribution is discrete. That means that there exists a function

P X : R −→ [0,1]

such that for every A ⊆ R:
PX (A) =

∑
x∈A

P X (x)

We also denote:
P (X = a) = P X (a)

Definition 2.5.5:

Given an event A, we define the indicator function of A to be a random variable defined like so:

1A(ω) =

1 ω ∈ A
0 ω < A

Definition 2.5.6:

A random variable X has a bernoulli distribution of p ∈ [0,1] if:

PX ({1}) = p PX ({0}) = 1− p

This is indicated X ∼ Ber(p).
Random variables with a bernoulli distribution are also called indicators, as they indicate if an event occurred.

Note:

It should be obvious that indicators are discrete. This is since we can define P X (x) to be equal to PX ({x}).
But note that this isn’t always true. Say we want to somehow take a random number from [0,1], the probability that
we take any arbitrary number is 0 since there is an uncountable number of numbers to choose from, so there can’t be
a discrete probability function. We currently don’t have the tools to deal with this, so we’ll return to it later.

Proposition 2.5.7:

1A ∼ Ber(P (A))

Proof:

We know that P1A
({1}) = P ({1A = 1}) = P (A), as required. And P1A

({0}) = P ({1 = 0}) = P ({ω < A}) = P (Ac) = 1−P (A),
as required.

■.
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Definition 2.5.8:

A discrete random variable X has a uniform distribution over a set S, denoted X ∼ Unif[S] if the probability of X
being equal to any x ∈ S is equal, and P (X < S) = 0. That is, for every x,y ∈ S : P (X = x) = P (X = y).

Since P (X ∈ S) = 1, this means that
∑
x∈S

P (X = x) = |S | ·P (X = x) = 1, so for every x ∈ S, we have that P (X = x) = 1
|S | .

Since we have defined a new mathematical object it is handy to define equivalence on it. For random variables we define
two types of equivalence:

Definition 2.5.9:

Two random variables, X and Y , over the same probability space are almost surely equal if the probability that they
equal one another is 1. This is denoted by X

as= Y . So:

X
as= Y ⇐⇒ P (X = Y ) = 1 ⇐⇒ P ({ω ∈Ω | X(ω) = Y (ω)}) = 1

We say that two discrete random variables X and Y are distributively equal if they have the same distribution. This

is denoted by X
d= Y . So X

d= Y if and only if PX = PY . Note that X and Y don’t need to necessarily be defined over the
same probability space.

It is trivial to see that if X = Y (that is they are the same function), then X
as= Y and X

d= Y . But is almost surely equivalence
more powerful than distributive equivalence? The answer is yes.

Proposition 2.5.10:

If X is almost surely equal to Y , than X is distributively equal to Y .

Proof:

Let S ⊆ R, we will show that PX(S) = PY (S). Notice that P (X ∈ S) = P (X ∈ S,Y ∈ S) +P (X ∈ S,Y < S). But

{X ∈ S,Y < S} = {ω ∈Ω | X(ω) ∈ S,Y (ω) < S}

which is a subset of the set {ω ∈Ω | X(ω) , Y (ω)} which has a probability of 0 since X and Y are almost surely equal.
So we have that PX (S) = P (X ∈ S,Y ∈ S), and by symmetry PY (S) = P (X ∈ S,Y ∈ S), so we have that for every S ⊆ R:
PX (S) = PY (S).

qed

Proposition 2.5.11:

Suppose X and Y are two random variables and f : R −→ R is any real function.

(1) If X as= Y then f (X) as= f (Y ).

(2) If X d= Y then f (X) d= f (Y ).

Note:

It would be more correct to say that f ◦ X = f ◦ Y since we’re considering the composition of functions, but in
probability it is much more common to treat random variables in a way similar to numbers. This is a much more
comfortable way to treat them and there’s no issue with it.

Proof:

(1) We need to show that P (f (X) = f (Y )) = 1. That is, P ({ω ∈Ω | f (X(ω)) = f (Y (ω))}) = 1. But this set is a superset of
the set {ω ∈Ω | X(ω) = Y (ω)}, which has probability 1, and thus so does this. So f (X) as= f (Y ).
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(2) We need to show that Pf (X) = Pf (Y ). Let s ⊆ R, then:

Pf (X) (S) = P (f (X) ∈ S) = P
(
X ∈ f −1(S)

)
= P

(
Y ∈ f −1(S)

)
= P (f (Y ) ∈ S)

As required.

■

Notice that if we have two random variables X and Y , even if we know their distribution, we still can’t know the distri-
bution of random variables in the form of f (X,Y ), for example X +Y . This is demonstrated in the following example:

Example:

Suppose X,Y ∼ Ber
(

1
2

)
. In one case, suppose X and Y are the results of two independent coin flips, then X +Y has a

distribution of:

P (X +Y = x) =

1
4 x = 0,2
1
2 x = 1

since if x = 0 or 2 then both coins must be either heads or tails (one out of four possibilities), and if x = 1 then one
coin must be heads and the other tails (two out of four possibilities).
But if X = Y then X +Y = 2X which has a distribution P (X = 0) = 1

2 and P (X = 2) = 1
2 .

So we need an extra piece of information in order to discern more about how random variables interact with one another.

Definition 2.5.12:

A joint probability vector is a vector of random variables. So for example, we may have

X = (X1,X2, . . . ,Xn)

And the joint probability distribution of a joint probability vector X is a function:

PX : P (Rn) −→ [0,1]

Where for every S ∈ P (Rn):
PX (S) = P ((X1, . . . ,Xn) ∈ S)

A random vector is discrete if there exists a function P X : Rn −→ [0,1] such that for every S ⊆ Rn:

PX (S) =
∑
v∈S

P X (v)

If we know the joint probability distribution of a vector, we can also determine the probability distribution of each of its
terms.

Proposition 2.5.13:

Given X = (X1, . . . ,Xn), then for every relevant i: PXi
(A) = PX

(
Ri−1 ×A×Rn−i

)
.

Proof:

Notice that:
PX

(
Ri−1 ×A×Rn−i

)
= P (X1 ∈ R, . . . ,Xi−1 ∈ R,Xi ∈ A,Xi+1 ∈ R, . . . ,Xn ∈ R)

And we know that Xj ∈ R is true, so this is just equal to:

P (Xi ∈ A)

■

Notice that this means
P (X = x) = P (X = x,Y ∈ R) =

∑
y∈R

P (X = x,Y = y)
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Definition 2.5.14:

If X is a random variable and A is an event with nonzero probability, then we define conditional probability on X
given the event A by:

PX |A (S) = P (X ∈ S | A) = PA (X ∈ S)

Definition 2.5.15:

Two random variables, X and Y , are independent if for every A,B ⊆ R: P (X ∈ A,Y ∈ B) = P (X ∈ A) ·P (Y ∈ B). This is
denoted X Y as usual.

Proposition 2.5.16:

X and Y are independent random variables if and only if for every A ⊆ R where PX (A) > 0: PY |{X∈A} = PY .

Proof:

Notice that:

PY |{X∈A} (B) = P (Y ∈ B | X ∈ A) =
P (X ∈ A,Y ∈ B)

P (X ∈ A)

And thus if X and Y are independent this equals P (Y ∈ B), so the distributions are the same. And if this is equal to
PY (B), then we get P (X ∈ A,Y ∈ B) = P (X ∈ A) ·P (Y ∈ B) for every A and B, which means X and Y are independent.

■

Proposition 2.5.17:

If X and Y are discrete random variables, then they are indpendent if and only if for every real x and y:

P (X = x,Y = y) = P (X = x) ·P (Y = y)

Proof:

( =⇒ ) Let A = {x} and B = {y}, then:

P (X = x,Y = y) = P (X ∈ A,Y ∈ B) = P (X ∈ A) ·P (Y ∈ B) = P (X = x) ·P (Y = y)

(⇐= ) Let A,B ⊆ R, then:

P (X ∈ A,Y ∈ B) =
∑

(a,b)∈A×B
P (X = a,Y = b) =

∑
a∈A

∑
b∈B

P (X = a) ·P (Y = b) =

∑
a∈A

P (X = a) ·
∑
b∈B

P (Y = b) = P (X ∈ A) ·P (Y ∈ B)

So we have that X and Y are independent.

■

Definition 2.5.18:

A set of random variables {Xi}ni=1 is independent if for every E1, . . . ,En ⊆ R:

P (X1 ∈ E1, . . . ,Xn ∈ En) = P (X1,∈ E1) · · ·P (Xn ∈ En)

And given an infinitely countable set of random variables {Xi}∞i=1, they are independent if for every n ∈ R, {Xi}ni=1 is
independent.
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Proposition 2.5.19:

If {Xi}i∈I is independent and I is coutable and Ei ⊆ R for every i ∈ I , then:

P (∀i ∈ I : Xi ∈ Ei) =
∏
i∈I

P (Xi ∈ Ei)

Proof:

If I is finite then this is true by definition. Otherwise we know that by corollary 2.2.8:

P

 ∞⋂
i=1

{Xi ∈ Ei}

 = lim
n→∞

P

 n⋂
i=1

{Xi ∈ Ei}

 = lim
n→∞

n∏
i=1

P (Xi ∈ Ei) =
∞∏
i=1

P (Xi ∈ Ei)

As required.
■

Definition 2.5.20:

A discrete random variable X has a geometric distribution over p , 0, denoted X ∼Geo(p) if for every n ∈ N1:

P X (n) = (1− p)n−1 · p

Note:

It is necessary to show that this is in fact a valid distribution. So we must show that
∑

n∈N1

P (X = n) = 1. If p = 1 this is

true since P X (1) = p = 1 and for every other n it is 0, so the sum is 1. Otherwise:

∞∑
n=1

P (X = n) = p ·
∞∑
n=1

(1− p)n−1 = p ·
∞∑
n=0

(1− p)n

This is a geometric sum (which converges since (1− p) < 1), so this is equal to:

p · 1
1− (1− p)

=
p

p
= 1

As required.

Theorem 2.5.21:

If {Xi}∞i=1 are independent random variables which have a distribution of Ber(p), then min {k ∈ N1 | Xk = 1} has a
distribution of Geo(p).

The idea behind this theorem is that if you have a sequence of independent trials which can either succeed or fail with a
probability of p, then the probability that you succeed for the first time on your nth try distributes geometrically.

Proof:

Let Y = min {k ∈ N1 | Xk = 1}, we need to show Y ∼ Geo(p). We know that Y = n if and only if X1, . . . ,Xn−1 = 0 and
Xn = 1, since Y tracks the minimum index where Xk = 1. So:

P (Y = n) = P (X1 = 0, . . . ,Xn−1 = 0,Xn = 1)

And since the Xis are independent this is equal to:

= P (X1 = 0) · · ·P (Xn−1 = 0) ·P (Xn = 1) = (1− p) · · · (1− p) · p = (1− p)n−1 · p
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Which means Y distributes geometrically over p, as required.
■

Lemma 2.5.22:

Suppose X is a random variables whose support is N1, then P (X > n) = (1 − p)n for every n ∈ N1 if and only if
X ∼Geo(p).

Proof:

( =⇒ ) Notice that P (X = n) = P (X > n− 1)−P (X > n) which is equal to in this case (1−p)n−1− (1−p)n = (1−p)n−1 · (1−
(1− p)) = (1− p)n−1 · p as required.

(⇐= ) We will prove this through simple computation:

P (X > n) =
∞∑

x=n+1

P (X = x) = p ·
∞∑

x=n+1

(1− p)x−1 = p ·
(1− p)n

p
= (1− p)n

Since the sum is geometric.

■

Theorem 2.5.23 (Memorylessness of Geometric Distributions):

Suppose X is a random variables whose support is N1 and P (X = 1) < 1. Then the following are equivalent:

(1) X distributes geometrically.

(2) X
d= (X − 1 | X > 1)

(3) For every m ∈ N1, X d= (X −m | X > m)

The idea behind this theorem is that after m trials fail (X > m), the current state of the world is still the same as the
beginning of the trials (distributively equivalent to X).

Proof:

(1) =⇒ (3) Suppose X ∼Geo(p). We will prove this through direct computation:

PX−m|X>m (n) = P (X −n = m | X > m) =
P (X = n+m)
P (X > m)

=
p(1− p)n+m−1

(1− p)m
= p(1− p)n−1

Which is a geometric distribution, as required.

(3) =⇒ (2) This is trivial by letting m = 1.

(2) =⇒ (1) Notice that P (X = n) = P (X = n+ 1 | X > 1) = P(X=n+1)
P(X>1) . So we get that

P (X = n+ 1) = P (X = n) ·P (X > 1)

If we let pB P (X = 1), then P (X > 1) = 1− p since the support of X is N1. So:

P (X = n+ 1) = (1− p)P (X = n)

This is the definition of a geometric sequence (if we let an = P (X = n), we see that an+1 = (1−p)an). So we
get:

P (X = n) = (1− p)n−1 ·P (X = 1) = (1− p)n−1 · p

As required.

■



2.5. Discrete Random Variables 46

Definition 2.5.24:

Let n ∈ N1 and p ∈ [0,1]. We say that a discrete random variable X has a binomial distribution over n and p, denoted
X ∼ Bin(n,p) if for every natural k between 0 and n: P (X = k) =

(n
k

)
· pk · (1− p)n−k .

Note:

We must check that this is a valid distribution.

n∑
k=0

P (X = k) =
n∑

k=0

(
n
k

)
· pk · (1− p)n−k

Which is equal to, by the binomial theorem:

= (p+ 1− p)n = 1n = 1

As required.

Theorem 2.5.25:

If {Xi}ni=1 are indpendent random variables such that Xi ∼ Ber(p), then
n∑
i=1

Xi ∼ Bin(n,p).

The idea behind this is that if you have n independent trials each with a probability of success of p, the probability that
exactly k of them succeed has a binomial distribution.

Proof:

Let Y B
n∑
i=1

Xi . Y = k if and only if k of the Xis are equal to 1 and the rest are 0. So we must choose a subset of size k

of the Xis to be equal to 1, and there are
(n
k

)
choices for this. This means that:

P (Y = k) =
∑

I∈P k([n])

P (∀i ∈ I : Xi = 1,∀i < I : Xi = 0)

Notice that for every I :
P (∀i ∈ I : Xi = 1,∀i < I : Xi = 0) =

∏
i∈I

P (Xi = 1) ·
∏
i<I

P (Xi = 0)

Since the Xis are independent. This is equal to:

=
∏
i∈I

p ·
∏
i<I

(1− p) = p|I | · (1− p)n−|I |

Since I ∈ P k ([n]), |I | = k, so:
P (Y = k) =

∑
I∈P k([n])

pk · pn−k

Since there are
(n
k

)
choices for I , this is equal to:

=
(
n
k

)
· pk · pn−k

As required.
■
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Corollary 2.5.26:

If X ∼ Bin(n,p) and Y ∼ Bin(m,p) and X and Y are independent, then X +Y ∼ Bin(n+m,p).

Proof:

Suppose {Xi}n+m
i=1 are independent random variables with a distribution of Ber(p). Then

X
d=

n∑
i=1

Xi Y
d=

m∑
i=n+1

Xi

These are independent so X +Y =
n+m∑
i=1

Xi , which by the theorem above distributes Bin(n+m,p), as required.

■

Definition 2.5.27:

Suppose {Xn}∞n=1 is a set of random variables, and so is Y . These random variables don’t need to necessarily be over

the same probability space. We say that the distributive limit of Xn is Y , denoted Xn
d−→ Y if for every A ⊆ R :

limn→∞P (Xn ∈ A) = P (Y ∈ A).
If Xn and Y both have a countable support S then this is equivalent to ∀k ∈ S : limn→∞P (Xn = k) = P (Y = k).

Definition 2.5.28:

A discrete random variable X has a Poisson Distribution over λ ∈ R>0, denote X ∼ Poi(λ) if for every n ∈ N0, we have
that P (X = n) = e−λ · λn

n! .

Note:

This is a valid distribution since:
∞∑
n=0

P (X = n) = e−λ ·
∞∑
n=0

λn

n!

The right side is the powerseries expansion of eλ, so this is equal to e−λ · eλ = 1 as required.

Theorem 2.5.29:

Suppose {Xn}∞n=1 is a sequence of random variables such that Xn ∼ Bin
(
n, λn

)
for some positive real λ. Then

Xn
d−→ Poi(λ)

Proof:

Let k ∈ N0. We sill show that limn→∞P (Xn = k) = e−λ · λk

k! . We know that:

P (Xn = k) =
(
n
k

)
·
(λ
n

)k
·
(
1− λ

n

)n−k
Now note that: (

n
k

)
·
(λ
n

)k
=

n!
nk · (n− k)!

· λ
k

k!
=
n · (n− 1) · · · (n− k + 1)

nk
· λ

k

k!

Notice that the numerator and denominator of n·(n−1)···(n−k+1)
nk

are both degree k polynomials with a leading coefficient
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of 1, so the limit of this is 1. The limit of λk

k! is obviously λk

k! since it is independent of n. Next we have:(
1− λ

n

)n−k
=

(
1− λ

n

)n
·
(
1− λ

n

)−k
The left has a limit of e−λ, and the left has a limit of 1 (since the limit of 1 − λ

n ’s limit is 1). So all in all the limit of
P (Xn = k) is:

1 · λ
k

k!
· e−λ · 1 = e−λ · λ

k

k!
As required.

■

Proposition 2.5.30:

(1) If X and Y are independent random variables and X ∼ Poi(λ) and Y ∼ Poi(µ) then X +Y ∼ Poi(λ+µ).

(2) If X ∼ Poi(λ) and Y | X = n ∼ Bin(n,p) then Y ∼ Poi(pλ).

Proof:

(1) We will prove this through direct computation:

P (X +Y = k) =
k∑

n=0

P (X = n,Y = k −n) =
k∑

n=0

P (X = n) ·P (Y = k −n) =

=
k∑

n=0

e−λ · e−µ · λ
n

n!
·

µn−k

(k −n)!
= e−(λ+µ) ·

k∑
n=0

λn ·µn−k

n! · (k −n)!

Doing a bit of algebraic manipulation, this is equal to:

e−(λ+µ)

k!
·

k∑
n=0

(
k
n

)
λn ·µn−k = e−(λ+µ) ·

(λ+µ)k

k!

As required.

(2) We know that since Y | X = n ∼ Bin(n,p), if Y = k then n ≥ k.

P (Y = k) =
∞∑
n=k

P (Y = k | X = n) ·P (X = n) =
∞∑
n=k

(
n
k

)
· pk · (1− p)n−k · e−λ · λ

n

n!
=

= e−λpk ·
∞∑
n=k

(
n
k

)
· ·(1− p)n−k · λ

n

n!

Notice that the term inside the sum is equal to:

λn · (1− p)n−k

(n− k)!

So the sum is equal to:

=
e−λ · pk ·λk

k!
·
∞∑
n=0

λn · (1− p)n

n!

The sum is the powerseries of eλ(1−p), so this is equal to:

=
(pλ)k

k!
· e−λ · eλ(1−p) = e−pλ ·

(pλ)k

k!

Which is the poisson distribution of pλ, as required.
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Definition 2.5.31:

A discrete random variable X has a hypergeomtric distribution over N,D,n ∈ N0 if:

P (X = k) =
(D
k

)
·
(N−D
n−k

)(N
n

)
For relevant k. This is denoted X ∼HG(N,D,n).

Note:

Notice that if X ∼HG(N,D,n) then k ≤D, n ≤N , k ≤ n, D ≤N , and n− k ≤N −D. So 0,D +n−N ≤ k ≤D,n.

Theorem 2.5.32:

Suppose an urn has N objects, D of which are considered “special”. We remove (without repetition) n objects from
the urn. Let X be the number of “special” objects removed, then X ∼HG(N,D,n).

Proof:

How many ways are there to remove k special objects out of n choices? Well first there are
(D
k

)
choices for which

special objects to choose, and then there are another
(N−D
n−k

)
choices for the remaining objects (there are N −D non-

special objects, and n − k objects which still need to be removed). So all in all there are
(D
K

)
·
(N−D
n−k

)
ways to choose k

special objects out of n choices. There are
(N
n

)
ways to choose n objects, and since each choice is equally likely (since

the probability of choosing any single object is equal), the probability that we choose k special objects is:

P (X = k) =
(D
k

)
·
(N−D
n−k

)(N
n

)
As required.

■

Note:

This also proves that hypergeometric distributions are valid probability distributions since they represent a valid
probability situation. X must be equal to some k between 0,D + n −N and n,D, so the sum over all possible ks of
P (X = k) must be 1.



2.6. Expected Values 50

2.6 Expected Values

Definition 2.6.1:

Given a random variable X, we define the expected value of X, denoted E [X] to be:

E [X]B
∑
x∈R

x ·P (X = x)

Since this is not a necessarily positive sum, and we are summing over a set R (so order doesn’t matter), it is necessary
for this sum to converge absolutely. So X has an expected value if and only if∑

x∈R
|x| ·P (X = x) <∞

Which is equivalent to E [|X |] <∞.

The expected value of a random variables gives a weighted average of the values of the random variable.

Theorem 2.6.2 (The Law of the Unconscious Statistician):

If X = (X1, . . . ,Xn) is a random vector of n random variables and f : Rn −→ R then

E [f (X)] =
∑
Y∈Rn

f (Y ) ·P (X = Y )

Proof:

We know that:
E [f (X)] =

∑
x∈R

x ·P (f (X) = x)

But f (X(ω)) = x if and only if X(ω) ∈ f −1 {x}. This means that

P (f (X) = x) = P
(
X ∈ f −1 {x}

)
=

∑
Y∈f −1{x}

P (X = Y )

So we have that
E [f (X)] =

∑
x∈R

x ·
∑

Y∈f −1{x}

P (X = Y ) =
∑
x∈R

∑
Y∈f −1{x}

f (Y ) ·P (X = Y )

Note that summing over every x ∈ R and Y ∈ f −1 {x} is equal to summing over every Y ∈ Rn, since for every real vector
Y , there is exactly one x where Y ∈ f −1 {x}, and that is f (Y ). So this is equal to∑

Y∈Rn

f (Y ) ·P (X = Y )

As required.
■

In the special case where n = 1, so X = (X), and f : R −→ R, we have that:

E [f (X)] =
∑
x∈R

f (x) ·P (X = x)

Theorem 2.6.3:

The following are true:

(1) If X
as
≥ 0 then E [X] ≥ 0 (this means P (X ≥ 0) = 1).
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(2) If X d= Y then E [X] = E [Y ].

(3) E is linear: E [αX + βY ] = αE [X] + βE [Y ].

(4) E is monotonic: If X
as
≥ Y then E [X] ≥ E [Y ].

(5) If X and Y are indpendent, E [X ·Y ] = E [X] ·E [Y ].

(6) If X has a support in N, then E [X] =
∑∞

n=1P (X ≥ n).

Proof:

(1) Since P (X ≥ 0) = 1, P (X < 0) = 0, so for every x < 0, P (X = x) = 0. Therefore:

E [X] =
∑
x>0

x ·P (X = x)

Which is a positive sum.

(2) Since both random variables have the same distribution, the sum of xP (X = x) is equal to xP (Y = x), so the
expected values are equal.

(3) First let us show that αX + βY has an expected value. So we need to show that E
[∣∣∣αX + βY

∣∣∣] <∞. But notice by
The Law of the Unconscious Statistician:

E
[∣∣∣αX + βY

∣∣∣] =
∑
x,y∈R

∣∣∣αx+ βy
∣∣∣ ·P (X = x,Y = y) ≤

≤ |α|
∑
x∈R
|x| ·

∑
y∈R

P (X = x,Y = y) +
∣∣∣β∣∣∣∑

y∈R

∣∣∣y∣∣∣ ·∑
x∈R

P (X = x,Y = y)

Notice that:
|α|

∑
x∈R
|x| ·

∑
y∈R

P (X = x,Y = y) = |α|
∑
x∈R
|x| ·P (X = x)

Which converges since E [X] exists. Similar for the other term. So E
[∣∣∣αX + βY

∣∣∣] <∞, as required.
And by The Law of the Unconscious Statistician again:

E [αX + βY ] =
∑
x,y∈R

(αx+ βy) ·P (X = x,Y = y)

Doing a very similar process to the one above, we see that this is equal to:

α
∑
x∈R

x ·
∑
y∈R

P (X = x,Y = y) + β
∑
y∈R

y ·
∑
x∈R

P (X = x,Y = y)

Which is equal to
α
∑
x∈R

x ·P (X = x) + β
∑
y∈R

y ·P (Y = y) = αE [X] + βE [Y ]

As required.

(4) This means X −Y
as
≥ 0, so E [X −Y ] ≥ 0, so E [X]−E [Y ] ≥ 0, and therefore E [X] ≥ E [Y ], as required.

(5) Assuming the expected value exists, we see that:

E [X ·Y ] =
∑
x,y∈R

xyP (X = x,Y = y) =
∑

x ∈ RxP (X = x) ·
∑
y∈R

yP (Y = y) = E [X] ·E [Y ]

Since |X | and |Y | are also independent, E [|X ·Y |] = E [|X |] ·E [|Y |] by above, and these both converge since X and
Y have expected value, so E [|X ·Y |] <∞ as required.
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(6) Notice that n ·P (X = n) =
n∑

k=1
P (X = n), so:

E [X] =
∞∑
n=1

nP (X = n) =
∞∑
n=1

n∑
k=1

P (X = n)

This is summing over n ∈ N, n ≥ k, so we can reverse the order of summation to get:

∞∑
k=1

∞∑
n=k

P (X = n) =
∞∑
k=1

P (X ≥ k)

As required.

■

Proposition 2.6.4:

(1) E [Ber(p)] = p

(2) E [Bin(n,p)] = np

(3) E [Geo(p)] = 1
p

(4) E [Unif [a,b]] = a+b
2

(5) E [Poi(λ)] = λ

Proof:

(1) With some direct computation, we see that E [Ber(p)] = 1 · p+ 0 · (1− p) = p, as required.

(2) Since Bin(n,p) = Ber(p) + · · ·+ Ber(p), E [Bin(n,p)] = E [Ber(p)] + · · ·+E [Ber(p)] = p+ · · ·+ p = np, as required.

(3) Notice that if p < 1:

E [Geo(p)] = p ·
∞∑
n=1

n · (1− p)n−1

Notice that

− d
dp

∞∑
n=1

(1− p)n =
∞∑
n=1

n(1− p)n−1

This is true for p < 1 since the radius of convergence of this powerseries is 1. And we know that:
∞∑
n=1

(1− p)n =
1− p
p

=
1
p
− 1

Whose derivative is − 1
p2 . So:

∞∑
n=1

n(1− p)n−1 =
1
p2

And therefore E [Geo(p)] = 1
p .

If p = 1 then the sum is just equal to 1, since for n > 1 (1− p)n−1 = 0.

(4)

E [Unif [a,b]] =
b∑

n=a

n · 1
b − a+ 1

=
1

b − a+ 1
· b − a+ 1

2
(a+ b) =

a+ b
2

(5)

E [Poi (λ)] = e−λ ·
∞∑
n=0

n · λ
n

n!
= e−λ ·

∞∑
n=1

λn

(n− 1)!
= λe−λ ·

∞∑
n=0

λn

n!
= λ
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As required.

■
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2.7 Variance

We can think of expected values as an approximation of a random variable, and then a good idea is to come up with a
measure for how good of an approximation this is. We call this approximation the random variable’s variance.

Definition 2.7.1:

Given a random variable X, we define its variance to be:

Var(X)B E
[
(X −E [X])2

]
This is of course assuming that it exists.

Note that we can’t just define it to be E [X −E [X]] which would be more natural, since this equals E [X] − E [E [X]] =
E [X]−E [X] = 0. Notice that the variance is equal to:

= E
[
X2 − 2XE [X] +E [X]2

]
= E

[
X2

]
− 2E [X]E [X] +E [X]2 = E

[
X2

]
−E [X]2

Theorem 2.7.2:

The following are true:

(1) Var(X) ≥ 0.

(2) Var(X) = 0 if and only if there exists some c ∈ R such that X =as= c.

(3) Var(X + a) = Var(X).

(4) Var(aX) = a2 Var(X).

(5) If X and Y are independent, then Var(X +Y ) = Var(X) + Var(Y ).

Proof:

(1) Since (X −E [X])2 ≥ 0, so is its expected value, which is the variance of X.

(2) Note that if X as= c, then E [c] = c = E [X]. So if Var(X) = 0, notice that this means:

0 = E
[
(X −E [X])2

]
=

∑
k∈R

k2P (X −E [X] = k)

And k2 ≥ 0, for k , 0 the term must be 0, so P (X −E [X] = k) = 0 for k , 0. And since this is a probability

function, this means that P (X −E [X] = 0) = 1, so by definition X
as= E [X]. For the converse, notice X

d= E [X], so
Var(X) = E

[
(E [X]−E [X])2

]
= E [0] = 0.

(3) Notice that
Var(X + a) = E

[
(X + a−E [X + a])2

]
= E

[
(X −E [X])2

]
= Var(X)

(4) Notice that
Var(aX) = E

[
(aX −E [aX])2

]
= E

[
a2(X −E [X])2

]
= a2 Var(X)

(5) Plugging in X +Y to the formula for variance we found above gives:

Var(X +Y ) = E
[
(X +Y )2

]
−E [X +Y ]2 = E

[
X2

]
+ 2E [XY ] +E

[
Y 2

]
−E [X]2 − 2E [X]E [Y ]−E [Y ]2

Since X and Y are independent, E [XY ] = E [X]E [Y ], so this is equal to:

E
[
X2

]
−E [X]2 +E

[
Y 2

]
−E [Y ]2 = Var(X) + Var(Y )

As required.

■

Now let’s compute the variance of some distributions:
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Proposition 2.7.3:

(1) Var(Ber(p)) = p − p2

(2) Var(Bin(n,p)) = n(p − p2)

(3) Var(Unif[n]) = n2−1
12

(4) Var(Poi(λ)) = λ

(5) Var(Geo(p)) = 1−p
p2

Proof:

(1) Notice that X2 Ber(p) since it is actually equal to X. So Var(X) = E [X]−E [X]2 = p − p2.

(2) Since Bin(n,p) is distributively equal to the sum of n independent bernoulli distributions, and the variance of the
sum of independent random variables is equal to the sum of the variances, this is equal to n(p − p2) as required.

(3) Notice that:

E
[
X2

]
=

n∑
k=1

k2 ·P (X = k) =
1
n
·

n∑
k=1

k2 =
1
n
· n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)
6

And so:

Var(X) =
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=
n2 − 1

12
And notice that Unif [a,b] = Unif [b − a+ 1] + a− 1, so:

Var(Unif [a,b]) =
b2 + a2 − 2ab+ 2b − 2a

12

(4) Notice that:

E
[
X2

]
= e−λ ·

∞∑
k=0

k2 · λ
k

k!
= λe−λ ·

∞∑
k=0

(k + 1)
λk

k!
= λe−λ(eλ +λeλ) = λ+λ2

And so the variance is equal to λ+λ2 −λ2 = λ.

(5) This is left as an exercise (or look it up). The computation doesn’t really add anything of value to the discussion.

■

Proposition 2.7.4:

Suppose X is a random variable which has variance. Then

Var(X) = min
a∈R

E
[
(X − a)2

]
So the minimum is when a = E [X].

Proof:

Let Y = X − E [X] and let ε , 0. We will show that E
[
(Y + ε)2

]
> Var(X) = Var(Y ). Furthermore, since E [Y ] = 0,

E [Y + ε] = ε, so:
E
[
(Y + ε)2

]
= Var(Y + ε) +E [Y + ε]2 = Var(Y + ε) + ε2 = Var(X) + ε2

So E
[
(Y + ε)2

]
> Var(X) as required (since ε2 > 0).

■
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Notice that if X and Y are two random variables, we showed above that (this is a trivial result from the definition of
variance):

Var(X +Y ) = Var(X) + Var(Y ) + 2(E [XY ]−E [X]E [Y ])

This rightmost term turns out to be somewhat important, and it offers a sort of measure as to how dependent two random
variables are. So like what we do with every significant mathematical object, we’ll give it a name.

Definition 2.7.5:

Given two random variables X and Y , their covariance is:

Cov(X,Y )B E [XY ]−E [X]E [Y ]

Note that this is equal to E [(X −E [X])(Y −E [Y ])]. As we remarked above, Var(X +Y ) = VarX + VarY + 2Cov(X,Y ). So it
follows then that if X and Y are independent, Cov(X,Y ) = 0. And Cov(X,X) = E

[
X2

]
−E [X]2 = Var(X).

Theorem 2.7.6:

(1) Covariance is symmetric: Cov(X,Y ) = Cov(Y ,X).

(2) Cov(αX + βY ,Z) = αCov(X,Z) + βCov(Y ,Z).

(3) Cov(X +α,Y ) = Cov(X,Y )

Proof:

(1) This is trivial by the definition of covariance.

(2) By definition:
Cov(αX + βY ,Z) = E [(αX + βY )Z]−E [αX + βY ]E [Z] =

= αE [XZ] + βE [YZ]−αE [X]E [Z]− βE [Y ]E [Z] = αCov(X,Z) + βCov(Y ,Z)

As required.

(3) Notice that Cov(α,Y ) = E [αY ] −E [α]E [Y ] = αE [Y ] − αE [Y ] = 0, and Cov(X +α,Y ) = Cov(X,Y ) + Cov(α,Y ) =
Cov(X,Y ) as required.

■

Theorem 2.7.7:

If {Xi}ni=1 are random variables then:

Var

 n∑
i=1

Xi

 =
n∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n
Cov

(
Xi ,Xj

)

Proof:

We can show this through induction. The trivial case of n = 1 is trivial, and the other base case n = 2 was shown

above. For the inductive step, notice that in the sum
n+1∑
i=1

Xi , we can treat Xn + Xn+1 as one term and get a sum of n

random variables. So:

Var

n+1∑
i=1

Xi

 =
n−1∑
i=1

Var(Xi) + Var(Xn +Xn+1) + 2
∑

1≤i<j≤n−1

Cov
(
Xi ,Xj

)
+ 2

n−1∑
i=1

Cov(Xi ,Xn +Xn+1)

Since Var(Xn +Xn+1) = Var(Xn) + Var(Xn+1) + 2Cov(Xn,Xn+1) and Cov(Xi ,Xn +Xn+1) = Cov(Xi ,Xn) + Cov(Xi ,Xn+1),
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this is equal to:

=
n+1∑
i=1

Var(Xi) + 2Cov(Xn,Xn+1) + 2
∑

1≤i<j≤n
Cov

(
Xi ,Xj

)
+ 2

n−1∑
i=1

Cov(Xi ,Xn+1)

Since for i = n, Cov(Xi ,Xn+1) = Cov(Xn,Xn+1), this is equal to:

=
n+1∑
i=1

Var(Xi) + 2
∑

1≤i<j≤n+1

Cov
(
Xi ,Xj

)
As required.

■

An alternative way of writing this is:

Var

 n∑
i=1

Xi

 =
n∑
i=1

Var(Xi) +
∑

1≤i,j≤n
Cov

(
Xi ,Xj

)
Since for every two indexes a and b, the term Cov(Xa,Xb) will be added twice, since Cov(Xb,Xa) = Cov(Xa,Xb) will also
be added. And since Var(Xi) = Cov(Xi ,Xi) we can rewrite this again as:

Var

 n∑
i=1

Xi

 =
∑

1≤i,j≤n
Cov

(
Xi ,Xj

)
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2.8 Approximations and Bounds

So now that we’ve discussed expected values and variance, what exactly are they useful for? Recall what we’re trying
to study in probability theory: probability. It turns out that variance and expected values, along with being interesting
on their own, also provide useful tools for studying probability. A big contribution of theirs is the many bounds and
approximations they provide for probability. This is best demonstrated in the following theorems.

Theorem 2.8.1 (Markov’s Inequality):

Suppose X
as
≥ 0 and X has an expected value. Then for any positive real a:

P (X ≥ a) ≤ E [X]
a

Proof:

We know that X
as
≥ a ·1{X≥a} since if X ≥ a then a ·1{X≥a} = a, and if 0 ≤ X < a then it is equal to 0. So this means:

E [X] ≥ E
[
a ·1{X≥a}

]
= a ·E

[
1{X≥a}

]
Now recall that an indicator function has an expected value of the probability of the event it indicates (since it has a
bernoulli distribution over this parameter). So:

E [X] ≥ a ·P (X ≥ a)

Which means

P (X ≥ a) ≤ E [X]
a

As required.
■

Another way we can write Markov’s inequality is by:

P (X ≥ b ·E [X]) ≤ 1
b

For b > 0.

Exercise:

Suppose {Xi}ni=1 is a sequence of independent random variables such that Xi ∼Unif[N ]. Find an upper bound for the
probability that there are at least ℓ collisions between the random variables.

Solution:

First, let us define indicator functions which indicate whether or not two random variables are equal:

Yi,j = 1{Xi=Xj}

And we’ll let Y be equal to the total number of collisions, which is the sum of all Yi,js for i < j:

Y =
∑
i<j

Yi,j

Since Yi,j
as
≥ 0, Y

as
≥ 0. And since expected values are linear:

E [Y ] =
∑
i<j

E
[
Yi,j

]
=

∑
i<j

P
(
Xi = Xj

)
The probability that Xi = Xj is equal to 1

N since if we set Xi ’s value, the probability that Xj is equal to that value is 1
N .
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Since there are
(n

2
)

values for i, j such that i < j (take any 2-length subset of [n] which naturally gives i, j).

E [Y ] =
∑
i<j

1
N

=
(
n
2

)
· 1
N

So all in all:

P (Y ≥ ℓ) ≤ E [Y ]
ℓ

=
(
n
2

)
· 1
N · ℓ

Exercise (The Coupon Collector’s Problem):

Suppose there are n types of coupons, and you keep collecting coupons until you have all n types. Further suppose
that the probability of collecting any type of coupon is equal (and thus distributes uniformly over [n]).

(1) How many coupons must be collected in order to have a probability of having all types of coupons with a
probability ≥ 1

c ?

(2) Show that the probability of collecting more than 2n log(n) coupons (without getting all types) is ≤ 1
n .

Solution:

(1) Let Yk be the minimum number of coupons collected in order to get k distinct coupons. So we want to analyze
Yn. Notice that Y0 = 0 and:

Yn = Yn −Y0 =
n∑

k=1

Yk −Yk−1

And further notice that the probability that P (Yk −Yk−1 = t) is equal to n−(k−1)
n ·

(
k−1
n

)t−1
since n−(k−1)

n is the prob-

ability we choose a different type coupon on the tth attempt after Yk−1, and
(
k−1
n

)t−1
is the probability that we

choose one of the k−1 types of coupons for the t−1 attempts before that. This means that Yk−Yk−1 ∼Geo
(
n−k+1

n

)
.

This means that:

E [Yn] =
n∑

k=1

E [Yk −Yk−1] =
n∑

k=1

n
n− k + 1

This is just the sum from the opposite direction of:

= n ·
n∑

k=1

1
k

And we know that
n∑

k=1

1
k
≤ log(n) + 1

So all in all we have:

P (Yn ≥ ℓ) ≤ E [Yn]
ℓ
≤ n

ℓ
(log(n) + 1)

So if we set ℓ2n(log(n) + 1), we get that

P (Yn ≥ ℓ) ≤ 1
2

Which means that P (Yn < ℓ) > 1
2 . So if we collect 2n(log(n) + 1) coupons, we have a probability of success of

greater than 1
2 .

(2) Let Ak
j denote the event where we collect k coupons but don’t get the jth coupon. Thus P

(
Ak
j

)
=

(
1− 1

n

)k
since

the probability of not collecting the jth coupon each time is 1 − 1
n . The event that we collect k coupons and we
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don’t get one of the types is the union (relative to j) of Ak
j . And by the union bound we get that:

P

 n⋃
j=1

Ak
j

 ≤ n∑
j=1

P
(
Ak
j

)
≤

n∑
j=1

(
1− 1

n

)k
= n ·

(
1− 1

n

)k

Notice that
(
1− 1

n

)k
=

(
1− 1

n

)n· kn ≤ e−
k
n . So if k = 2n log(n), we get that the probability is less than:

≤ n · e−2log(n) = n ·n−2 =
1
n

As required.

Theorem 2.8.2 (Chebyshev’s Inequality):

If X is a random variable with variance, then for every positive real a:

P (|X −E [X]| ≥ a) ≤ Var(X)
a2

Proof:

Let Y B (X −E [X])2, so Y ≥ 0 and Y has expected value since E [Y ] = Var(X). Notice that by Markov’s Inequality we
have that for every b > 0:

P (Y ≥ b) ≤ E [Y ]
b

=
Var(X)

b

For a > 0 notice that Y ≥ a2 is equal to (X −E [X])2 ≥ a2 = |X −E [X]| ≥ a, so:

P (|X −E [X]| ≥ a) = P
(
Y ≥ a2

)
≤ Var(X)

a2

As required.
■

Notice that:

P (X −E [X] ≥ a) ,P (X −E [X] ≤ −a) ≤ Var(X)
a2

Theorem 2.8.3 (The Weak Law of Large Numbers):

Suppose {Xi}∞i=1 is a sequence of random variables which all have the same distribution and variance (therefore their
expected values and variances are all equal as well). Let X be a random variable which represents their distribution

(ie. Xi
d= X for every i). Then for every ε > 0 we have that:

lim
n→∞

P


∣∣∣∣∣∣∣1n

n∑
k=1

Xk −E [X]

∣∣∣∣∣∣∣ > ε

 = 0

What this means is that the average result of the random variables does not diverge much from the expected value of the
random variables.

Proof:

Let Xn B
1
n

n∑
k=1

Xk . Therefore:

E
[
Xn

]
=

1
n
·

n∑
k=1

E [Xk] =
1
n
·n ·E [X] = E [X]
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And since the random variables are all independent we have that:

Var
(
Xn

)
=

1
n2 ·

n∑
k=1

Var(Xk) =
1
n2 ·n ·Var(X) =

Var(X)
n

By Chebyshev’s Inequality we have that:

P


∣∣∣∣∣∣∣1n ·

n∑
k=1

−E [X]

∣∣∣∣∣∣∣ > ε

 = P
(∣∣∣∣Xn −E

[
Xn

]∣∣∣∣ > ε
)
≤

Var
(
Xn

)
ε2 =

1
n
· Var(X)

ε2

Since Var(X)
ε2 is constant

lim
n→∞

1
n
· Var(X)

ε2 = 0

And since the probability is non-negative, by the squeeze theorem we have that

lim
n→∞

P


∣∣∣∣∣∣∣1n

n∑
k=1

Xk −E [X]

∣∣∣∣∣∣∣ > ε

 = 0

As required.
■
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2.9 Conditional Expectation

Definition 2.9.1:

If X is a discrete random variable with an expected value and A is an event such that P (A) > 0, we define the
conditional expectation of X relative to A by:

E [X | A]B
∑
x∈R

x ·P (X = x | A)

This definition begs the question, does conditional expectation always exist if E [X] does? The answer is yes.

Proposition 2.9.2:

Conditional expectation is well-defined in the regard stated above.

Proof:

Notice that by definition:

E [X | A] =
∑
x∈R

x · P (X = x,A)
P (A)

=
1

P (A)
·
∑
x∈R

x ·P (X = x,A)

Now note that that sum must converge since P (X = x,A) ≤ P (X = x) so absolutely the sum is less than the expected
value of X, and converges. But we can squeeze out a bit more from this. Notice that if we instead change our
point of view from events to random variables, the event A occurring is the same as 1A being 1. So P (X = x,A) =
P (X = x,1A = 1). Furthermore, notice that 1A ·X = x if and only if 1A = 1 and X = x or x = 0. But since x = 0 doesn’t
contribute to the sum, we get that:

E [X | A] =
1

P (A)
·
∑
x∈R

x ·P (1A ·X = x) =
1

P (A)
·E [1A ·X]

And since 1A ·X
as
≤ X, this converges.

■

Similar to the Law of Total Probability Version Two, we have a similar situation with expectation and conditional
expectation:

Proposition 2.9.3:

If X is a discrete random variable and {Ai}i∈I is a partition of Ω

E [X] =
∑
i∈I

E [X | Ai] ·P (Ai)

Proof:

This is simple and can be proven with some simple algebraic manipulation:

E [X] =
∑
x∈R

x ·P (X = x)

Which is equal to by Law of Total Probability Version Two:

=
∑
x∈R

x ·
∑
i∈I

P (X = x | Ai) ·P (Ai) =
∑
i∈I

P (Ai) ·
∑
x∈R

x ·P (X = x | Ai) =
∑
i∈I

E [X | Ai] ·P (Ai)

As required.
■
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Proposition 2.9.4:

If N is a discrete random variable with a natural support and expected value, and {Xi}∞i=1 is a sequence of random

variables which have the same distribution (suppose Xi
d= X), then:

E

 N∑
i=1

Xi

 = E [X] ·E [N ]

Proof:

We can use the previous proposition to see that:

E

 N∑
i=1

Xi

 =
∞∑
n=1

E

 N∑
i=1

Xi

∣∣∣∣∣∣∣N = n

 ·P (N = n)

Notice that

E

 N∑
i=1

Xi

∣∣∣∣∣∣∣N = n

 = E

 n∑
i=1

Xi

 =
n∑
i=1

E [X]i = n ·E [X]

So:

E

 N∑
i=1

Xi

 = E [X] ·
∞∑
n=1

n ·E [N ] = E [X] ·E [N ]

■

Definition 2.9.5:

Suppose X is a random variable with expected value, and Y is a random variable over the probability space (Ω,F ,P),
then we define a random variable:

E [X | Y ] : Ω −→ R

Such that for every ω ∈Ω:
E [X | Y ] (ω) = E [X | Y = Y (ω)]

If P (Y = Y (ω)) is non-zero, and we can define it to be 0 otherwise.

Conditional expectation is very useful when tring to compute expected values and variance for random variables which
are very dependent on another. This is best demonstrated by the following theorems:

Theorem 2.9.6 (Law of Total Expectation):

E [X] = E [E [X | Y ]]

Proof:

Let’s start by introducing a new random variable, P (X = x | Y ) for every x such that

P (X = x | Y ) (ω) = P (X = x | Y = Y (ω))

Now it’s quite simple to see that
E [X | Y ] =

∑
x∈R

x ·P (X = x | Y )

As passing ω to the right hand side gives us precisely the definition of E [X | Y = Y (ω)].
Now using this we see:

E [E [X | Y ]] = E

∑
x∈R

x ·P (X = x | Y )


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And applying the result from an above proposition, this is equal to:

∑
y∈R

E

∑
x∈R

x ·P (X = x
∣∣∣ Y = y)

 ·P (Y = y)

The expected value is just a constant so this is equal to:∑
y∈R

∑
x∈R

x ·P (X = x
∣∣∣ Y = y) ·P (Y = y) =

∑
x∈R

x ·
∑
y∈R

P (X = x,Y = y) =
∑
x∈R

x ·P (X = x) = E [X]

As required.
■

Proposition 2.9.7:

(1) If X and Y are independent then E [X | Y ] = E [X].

(2) If f is a real function then E [f (Y ) ·X | Y ] = f (Y ) ·E [X | Y ].

Proof:

(1) Let ω ∈Ω, then

E [X | Y ] (ω) = E [X | Y = Y (ω)] =
∑
x∈R

x ·P (X = x | Y = Y (ω)) =
∑
x∈R

x ·P (X = x) = E [X]

(2) Let ω ∈Ω then:
E [f (Y ) ·X | Y ] = E [f (Y ) ·X | Y = Y (ω)] = E [f (Y (ω)) ·X | Y = Y (ω)]

And since f (Y (ω)) is a constant, this is equal to:

= f (Y (ω)) ·E [X | Y = Y (ω)] =
(
f (Y ) ·E [X | Y ]

)
(ω)

As required.

■

Definition 2.9.8:

Given an event A and a random variable X with variance, we define conditional variance of X relative to A to be:

Var (X | A) = E
[
X2

∣∣∣ A]
−E [X | A]2

And if Y is another random variable, we define Var (X | Y ) to be another random variable defined by:

Var (X | Y ) (ω)B Var (X | Y = Y (ω))

Notice then that as a direct result of the definition

Var (X | Y ) = E
[
X2

∣∣∣ Y ]
−E [X | Y ]2

Lemma 2.9.9:

E [Var (X | Y )] = Var(X −E [X | Y ])
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Proof:

Notice that
E [Var (X | Y )] = E

[
E
[
X2

∣∣∣ Y ]]
−E

[
E [X | Y ]2

]
= E

[
X2

]
−E

[
E [X | Y ]2

]
And

Var(X −E [X | Y ]) = E
[
X2

]
− 2E [X ·E [X | Y ]] +E

[
E [X | Y ]2

]
−
(
E [X]−E [E [X | Y ]]

)2

Notice that E [X]−E [E [X | Y ]] = E [X]−E [X] = 0, and that

E [X ·E [X | Y ]] = E [E [X ·E [X | Y ] | Y ]]

Now recall that proposition 2.9.7 E [X ·E [X | Y ] | Y ] = E [X | Y ] ·E [X | Y ] since E [X | Y ] is a function of Y . So

E [X ·E [X | Y ]] = E
[
E [X | Y ]2

]
So all in all:

Var(X −E [X | Y ]) = E
[
X2

]
−E

[
E [X | Y ]2

]
As required.

■

Theorem 2.9.10:

Var(X) = E [Var (X | Y )] + Var(E [X | Y ])

Proof:

Notice that

E [Var (X | Y )] = E
[
E
[
X2

∣∣∣ Y ]
−E [X | Y ]2

]
= E

[
E
[
X2

∣∣∣ Y ]]
−E

[
E [X | Y ]2

]
= E

[
X2

]
−E

[
E [X | Y ]2

]
And

Var(E [X | Y ]) = E
[
E [X | Y ]2

]
−E [E [X | Y ]]2 = E

[
E [X | Y ]2

]
−E [X]2

So all in all we get that
E [Var (X | Y )] + Var(E [X | Y ]) = E

[
X2

]
−E [X]2 = Var(X)

As required.
■
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3 General Probability Spaces

3.1 General Probability Spaces

We will now generalize our discussion to not just focus on discrete probability spaces but general ones as well. This will
be somewhat brief and we will then focus on continuous probability spaces. First let’s revise our previous definition of a
probability space.

Definition 3.1.1:

A σ -algebra is a set F ⊆ P (Ω) for some set Ω which satisfies the following conditions:

(1) ∅ ∈ F

(2) If {Un}n∈N ∈ F then their union is in F as well:⋃
n∈N

Un ∈ F

(3) For every U ∈ F , its complement is in F as well: U c ∈ F .

It then follows that Ω ∈ F since it is the empty set’s complement. F is also closed under finite unions since we can define
Un = ∅ for every n outside of the indexing set. And if {Un}n∈N ∈ F , then U c

n ∈ F and therefore⋃
n∈N

U c
n

c ∈ F =⇒
⋂
n∈N

Un ∈ F

So F is closed under intersections as well.

Proposition 3.1.2:

If I is an arbitrary indexing set and {Fi}i∈I is a sequence of σ -algebras, then⋂
i∈I
Fi

is also a σ -algebra.

Proof:

We will show that the intersection satisfies the conditions for being a σ -algebra.

(1) Since for every Fi , ∅ ∈ Fi , ∅ is in the intersection as well.

(2) If {Un}n∈N is in the intersection, {Un}n∈N ∈ Fi for every i ∈ I , so:⋃
n∈N

Un ∈ Fi

Since Fi is a σ -algebra, and since this is true for every i, the union of Un is in the intersection of Fi .

(3) If U is in the intersection, it is in every Fi , and therefore U c is in every Fi as well and is therefore in the intersec-
tion.

■

So if we have a characteristic which we want a σ -algebra to have, then we can take the minimum σ -algebra which has
this characteristic (minimum under ⊆) by taking the intersection of all the σ -algebras which have this characteristic. The
most famous and useful example of this are Borel Sets:

Definition 3.1.3:

Given a set S ⊆ R, we define the Borel Set of S, B (S), to be the minimum σ -algebra which contains every closed
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interval in S.
Furthermore, while this is redundant, we will require B (S) ⊆ P (S).

B (S) exists since we can take the intersection of all the σ -algebras which contain every closed interval of S and are subsets
of its powerset. This intersection is non-empty since P (S) is contained in it.

Definition 3.1.4:

A Probability Space is a triplet
(Ω,F ,P)

Where Ω is a set called the sample space, F is a σ -algebra over Ω, and P is a probability function over F , a function

P : F −→ [0,1]

Where P (Ω) = 1 and if {An}n∈N are disjoint then

P

⊔
n∈N

An

 =
∑
n∈N

P (An)

Theorem 3.1.5:

There exists a probability function:
P : B ([0,1]) −→ [0,1]

Where for every [a,b] ⊆ [0,1], P ([a,b]) = b − a.

Notice that this doesn’t tell us much about the actual definition of the Lebesgue measure, just a certain criteria it must
fulfil. We will not be proving this theorem as we don’t have the necessary tools to do so. To prove this we just need to
show that the Lebesgue Measure satisfies the criteria.

Proposition 3.1.6:

Suppose P is the probability function defined over B ([0,1]) discussed above. Then

(1) P ({a}) = 0

(2) P ((a,b)) = b − a

(3) If Q is countable, then P (Q) = 0.

Proof:

(1) Notice that in theorem 2.2.7, we did not assume that the probability space was discrete, so we will use the
result here. Let’s define An =

[
a,a+ 1

n

]
for every n ∈ N. Then {An}n∈N is decreasing, and its intersection is {a}.

Furthermore, notice that P (An) = a+ 1
n − a = 1

n . So:

P ({a}) = P

⋂
n∈N

An

 = lim
n→∞

P (An) = lim
n→∞

1
n

= 0

As required.

(2) Notice that:
P ([a,b]) = P ((a,b)∪ {a} ∪ {b}) = P ((a,b)) +P ({a}) +P ({b}) = P ((a,b))

Since the probability of a singleton is 0. So:

P ((a,b)) = P ([a,b]) = b − a



3.1. General Probability Spaces 68

(3) We know that

P (Q) = P

⊔
q∈Q
{q}


And since this is a disjoint countable union, this is equal to:

=
∑
q∈Q

P ({q}) = 0

■

Definition 3.1.7:

If (Ω,F ,P) is a probability space, a random variable is a function

X : Ω −→ R

Where for every B ∈ B (R), the preimage of B, X−1(B), is an event in F . The reason for this is so X ∈ B (which is the
set

{
ω ∈Ω

∣∣∣ω ∈ X−1(B)
}
) is an event in F .

The distribution function of X is a function

PX : B (R) −→ [0,1]

Such that PX (B) = P (X ∈ B) = P
(
X−1(B)

)
. Note that PX is a probability function over (R,B (R)).

Two random variables, X and Y , are distributively equal (or equivalent) if PX = PY . This is denoted X
d= Y .

Definition 3.1.8:

If X is a random variable, then the cumulative distribution of X is the function

FX : R −→ [0,1]

Defined by
FX(s) = P (X ≤ s) = P

(
X−1

(
(−∞, s]

))
The complementary cumulative distribution function (or tail distribution) of X is the function

F̄ : R −→ [0,1]

Defined by
F̄ (s) = P (X > s) = 1−F (s)

Proposition 3.1.9:

If X is a random variable, then:

(1) FX is increasing.

(2) lim
x→∞

FX(x) = 1 and lim
x→−∞

FX(x) = 0.

(3) FX is continuous from the right and its limit exists from the left at every real point.

Proof:

(1) If x < y, then {X ≤ x} ⊆ {X ≤ y}, so

FX(x) = P (X ≤ x) ≤ P (X ≤ y) = FX(y)
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As required.

(2) Let an be any monotonic increasing sequence to∞. Then the sets {X ≤ an} are also increasing, and therefore

lim
n→∞

FX (an) = lim
n→∞

P (X ≤ an) = P

⋃
n∈N
{X ≤ an}


And the union of all sets {X ≤ an} is Ω, since for every ω ∈Ω, at some point X(ω) ≤ an. So:

= P (Ω) = 1

Since this is true for any monotonic increasing sequence to ∞, it must be true for any sequence whose limit is
infinity, and therefore

lim
x→∞

FX (x) = 1

Let an be any monotonic decreasing sequence to −∞. Then the sets {X ≤ an} are also decreasing and therefore:

lim
n→∞

FX (an) = lim
n→∞

P (X ≤ an) = P

⋂
n∈N
{X ≤ an}


And the intersection of all sets {X ≤ an} is the empty set, as for every ω ∈Ω, at some point X(ω) > an. So

= P (∅) = 0

And for the same reason as above, this means

lim
x→−∞

FX (x) = 0

(3) Let εn be a positive monotonic decreasing sequence to 0. Then:

lim
n→∞

FX (x+ εn) = lim
n→∞

P (X ≤ x+ εn) = P

⋂
n∈N
{X ≤ x+ εn}

 = P

⋂
n∈N

X−1
(
(−∞,x+ εn)

)
And this intersection is equal to X−1

(
(−∞,x)

]
, so this is equal to:

= P
(
X−1

(
(−∞,x)

])
= P (X ≤ x) = FX (x)

And therfore for every xn↘ x, the limit of FX (xn) is FX (x), so

lim
t→x+

FX (t) = FX (x)

And if εn is a negative increasing sequence to 0 then

lim
n→∞

FX (x+ εn) = P

⋃
n∈N
{X ≤ x+ εn}

 = P (X < x)

(Recall that by the definition of a limit, εn will never equal 0.) So

lim
t→x−

FX (t) = P (X < x)

So the limit exists.

■
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Definition 3.1.10:

A random variable X is discrete if and only if there exists a countable set B ∈ B (R) such that P (X ∈ B) = 1.

Note:

This is consistent with our previous definition, since singletons are in B (R), and B is countable:

P (X ∈ B) =
∑
x∈B

P (X = x) = 1

So we can define a mass probability function:

P X : Ω −→ [0,1]

By P X (x) = P (X = x). Since for every x < B, P (X = x) = 0 (otherwise the sum couldn’t be 1), this creates a proba-
bility distribution.

And a random variable X is continuous if for every x ∈ R, P (X = x) = 0. Note that this means a random variable can’t
be both discrete and continuous.

Proposition 3.1.11:

A random variable is continuous if and only if its cumulative distribution function is continuous.

Proof:

On one hand, if X is continuous, then we need to show that FX is left-continuous (since we already know it is right-
continuous). We know that

lim
t→x−

FX (t) = P (X < x)

And we also know that P (X ≤ x) = P (X < x) +P (X = x) = P (X < x). Therefore FX is also left continuous, as required.
For the converse, we know that for every x:

lim
t→x−

FX (t) = FX (x) = P (X ≤ x)

Since FX is continuous. But we know the limit is P (X < x), so P (X ≤ x) = P (X < x)+P (X = x) = P (X < x), so P (X = x) =
0. Since this is true for every x ∈ R, X is continuous.

■

Example:

It is possible for a random variable to be neither continuous nor discrete. Let X be a random variable over the
probability space ([0,1],B ([0,1]) ,P) defined by X(ω) = min

{
ω, 1

2

}
. So P

(
X = 1

2

)
= P

([
1
2 ,1

])
= 1

2 , so X is not continuous.

But suppose X is discrete, so there exists a countable S such that P (X ∈ S) = 1. It is obvious then that 1
2 ∈ S. But for

every other x , 1
2 , P (X = x) = 0. So we get that:

1 =
∑
x∈S

P (X = x) =
1
2

+
∑

1
2,x∈S

P (X = x) =
1
2

So we have that 1 = 1
2 in contradiction.

Lemma 3.1.12:

If X is a random variable and if {xn}∞n=1 is a sequence of distinct real points, then

lim
n→∞

P (X = xn) = 0
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Proof:

We know that:

P

X ∈⋃
n∈N

xn

 =
∞∑
n=1

P (X = xn) ≤ 1

And since P (X = xn) is nonnegative, this sum must converge. And since the sum converges, the limit of P (X = xn)
must be 0, as required.

■

This means that for every a ∈ R, the limit of P (X = x) as x approaches a is 0. This is because for every strictly monotonic
sequence of points xn to a, P (X = xn) has a limit of 0. So the limit of P (X = x) is 0.
Notice then that X is continuous if and only if P (X = x) is continuous. This is true because if X is continuous then the
limit of P (X = x) as x approaches a is 0, which is the same as P (X = a). And if P (X = x) is continuous then for every a, the
limit of P (X = x) as x approaches a is P (X = a), and that limit is 0, so P (X = a) = 0.

Proposition 3.1.13:

P (X ∈ (a,b)) = lim
x→a+

P (X ∈ (x,b)) = lim
x→b−

P (X ∈ (a,x))

Proof:

We know that
P (X ∈ (x,b)) = P (X < b)−P (X ≤ x) = P (X < b)−FX (x)

And since FX is right-conttinuous, as x approaches a from right, the limit of this is:

lim
x→a+

P (X ∈ (x,b)) = P (X < b)−FX (a) = P (X < b)−P (X ≤ a) = P (X ∈ (a,b))

As required.
And for the other equality:

P (X ∈ (a,x)) = P (X ≤ x)−P (X ≤ a)−P (X = x) = FX (x)−P (X ≤ a)−P (X = x)

As x approaches b from the left, the limit of FX (x) is P (X < b), and by the lemma above the limit of P (X = x) is 0. So:

lim
x→b−

= P (X < b)−P (X ≤ a) = P (X ∈ (a,b))

As required.
■

Proposition 3.1.14:

P (X ∈ (−∞, a)) = lim
c→−∞

P (X ∈ (c,a))

And
P (X ∈ (a,∞)) = lim

c→∞
P (X ∈ (a,c))

Proof:

Recall that
P (X ∈ (c,a)) = P (X < a)−FX (c)

And the limit of FX (c) as c goes to −∞ is 0 as shown above, so the limit of this is P (X < a), which is P (X ∈ (−∞, a)) as
required.
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Notice that

P (X ∈ (a,c)) = 1−P (X ≤ a or X ≥ c) = 1−P (X ≤ a)−P (X ≥ c) = P (X < c)−P (X ≤ a) = FX (c)−P (X ≤ a)−P (X = c)

The limit of FX (c) is 1 as shown above, and the limit of P (X = c) is 0 as shown in the lemma above. So the limit of
this is 1−P (X ≤ a) = P (X > a) which is P (X ∈ (a,∞)) as required.

■

Definition 3.1.15:

A random variable X is absolutely continuous if there exists a real nonnegative function fX such that for every real
a < b:

P (X ∈ (a,b)) =
∫ b

a
fX(x)dx

fX is called X’s probability density function.

Proposition 3.1.16:

If X is an absolutely continuous random variable then

(1) X is continuous.

(2) ∫ ∞
−∞

fX(x)dx = 1

(3)

FX (s) =
∫ s

−∞
fX(x)dx and F̄X (s) =

∫ ∞
s

fX(x)dx

(4)
f (x) = F′(x)

Proof:

(1) Suppose a ∈ R. Then:

P (X = a) = P

⋂
n∈N

{
X ∈ (a,a+

1
n

)
} = lim

n→∞
P
(
X ∈

(
a,a+

1
n

))
= lim

n→∞

∫ a+ 1
n

a
fX(x)dx

And this limit approaches 0. So P (X = a) = 0 as required.

(2) Let xn be a sequence of monotonically increasing values to infinity, and x′n decreasing to negative infinity. Then:∫ ∞
−∞

fX(x)dx = lim
∫ 0

x′n

fX(x) +
∫ xn

0
fX(x) = limP (X ∈ (x′n,0)) +P (X ∈ (xn,0))

This is equal to
limP (X ∈ (x′n,xn))

Since X is continuous, so we can add in P (X = 0) as it is equal to 0. And this is an increasing sequence so this is
equal to:

P

⋃
n∈N

{
X ∈ (x′n,xn)

} = P (X ∈ R) = 1

As required.

(3) We can use a similar proof as above for this.



3.1. General Probability Spaces 73

(4) Suppose ϕ is an antiderivative of fX (which must exist since fX is integrable over every interval), then:

FX(t) =
∫ t

−∞
fX(x)dx = lim

s→−∞
ϕ(t)−ϕ(s) = ϕ(t)− c

Where c is some constant. And if we differentiate both sides we get F′X(t) = fX(t), as required.

■

Definition 3.1.17:

If if I is an interval with length ℓ (so I = [a,b] or (a,b), etc. and ℓ = b−a) and X is a random variable with a distribution:

fX(x) =
1
ℓ
·1I (x)

Then X has a uniform distribution over I , this is denoted X ∼Unif(I).

It is simple to verify that this is a valid probability density function, since its integral over R is equal to:∫ b

a

1
b − a

dx =
b − a
b − a

= 1

Definition 3.1.18:

If X is a random variable with a probability density function:

fX(t) = λ · e−λt ·1[0,∞)

Where λ > 0, then X has a exponential probability distribution, denoted X ∼ Exp(λ).

This is a probability density function since its integral over R is:∫ ∞
0

λe−λt dt = e−λt
∣∣∣∞
0

= 1
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3.2 Joint Probability, Expectation, and Variance

Definition 3.2.1:

If X = (X1, . . . ,Xn) is a vector of absolutely continuous random variables then the joint probability function fX is a
function:

fX : Rn −→ [0,1]

Where:

P (X ∈ (a1,b1)× · · · (an,bn)) =
∫ b1

a1

· · ·
∫ bn

an

fX (x1, . . . ,xn)dx1 · · ·dxn

It can be shown with relative ease using theorem 2.2.7 that if X1, . . . ,Xn have a joint probability function then:

P (X1 ≤ a1, . . . ,Xn ≤ an) =
∫ a1

−∞
· · ·

∫ an

−∞
fX1,...,Xn

(x1, . . . ,xn)dxn · · ·dx1

Proposition 3.2.2:

If X and Y are two absolutely continuous random variables with a joint density function, X and Y are independent
if and only if fX,Y (x,y) = fX(x) · fY (y) for every real x and y.

Proof:

If X and Y are independent then for every real a, b, c, and d:

P (X ∈ (a,b),Y ∈ (c,d)) = P (X ∈ (a,b)) ·P (Y ∈ (c,d)) =
∫ b

a
fX(x)dx ·

∫ d

c
fY (x)dx =

∫ b

a

∫ d

c
fX(x) · fY (y)dydx

So fX(x) · fY (y) satisfies the property of the joint density function, so fX,Y = fX · fY .
For the converse, we know that for every I, J ∈ B (R):

P (X ∈ I,Y ∈ J) =
∫
I

∫
J
fX,Y (x,y)dydx =

∫
I

∫
J
fX(x) · fY (y)dydx =

∫
I
fX(x)dx ·

∫
J
fY (y)dy = P (X ∈ I) ·P (Y ∈ J)

So X and Y are independent, as required.
■

Proposition 3.2.3:

If X and Y are absoutely continuous random variables with a joint probability density function, for every real x:

fX(x) =
∫ ∞
−∞

fX,Y (x,y)dy

Proof:

Remember that:

P (X ∈ (a,b)) = P (X ∈ (a,b),Y ∈ R) =
∫ b

a

∫ ∞
−∞

fX,Y (x,y)dydx

And since this is true for every real a and b, if we define:

fX(x)B
∫ ∞
−∞

fX,Y (x,y)dy

We get that for every real a < b:

P (X ∈ (a,b)) =
∫ b

a
fX(x)dx
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As required.
■

Theorem 3.2.4:

If X and Y are absolutely continuous random variables with a joint probability density function, and we define
Z = X +Y , we have that

fZ (z) =
∫ ∞
−∞

fX,Y (t, z − t)dt

is a probability density function of Z’s.

Proof:

Notice that:
P (X ≤ a,Z ≤ b) = P (X ≤ a,X +Y ≤ b)

So we’re integrating over when X ≤ a and Y ≤ b −X:

=
∫ a

−∞

∫ b−x

−∞
fX,Y (x,y)dydx

If we define s = x+ y then dy = ds and s(x,b − x) = b so:

=
∫ a

−∞

∫ b

−∞
fX,Y (x,s − x)dsdx

If we then differentiate relative to a and then b we get that:

d
db

d
da

P (X ≤ a,Z ≤ b) =
d
db

∫ b

−∞
fX,Y (a,s − a)ds = fX,Y (a,b − a)

But we know that this derivative is fX,Z (a,b), so:

fX,Z (a,b) = fX,Y (a,b − a)

And we know that:

fZ (z) =
∫ ∞
−∞

fX,Z (x,z)dx =
∫ ∞
−∞

fX,Y (x,z − x)dx

As required.
■

Definition 3.2.5:

If X and Y are two absolutely continuous random variables with a joint probability function, for every real y we
define X

∣∣∣ Y = y to have a probability density function:

fX | Y=y =
fX,Y (x,y)
fY (y)

If fY (y) = 0, we define this to just be 0.

Thus we get that: ∫ ∞
−∞

fX | Y=y (x) · fY (y)dy =
∫ ∞
−∞

fX,Y (x,y)dy = fX(x)

Which is the continuous version of Law of Total Probability Version Two.
Now we have arrived at the real purpose of this section, expectation. Once again we will define expected values, but for
absolutely continuous random variables.
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Definition 3.2.6:

If X is an absolutely continuous random variable with a density function fX , then its expected value is defined to be:

E [X]B
∫ ∞
−∞

x · fX(x)dx

If this integral converges absolutely.
And the variance of X is defined the same as before:

Var(X)B E
[(
X −E [X]

)2
]

= E
[
X2

]
−E [X]2

Proposition 3.2.7:

If X has expectation then

E [X] =
∫ ∞

0
F̄X (x) dx+

∫ 0

−∞
FX (x)

Proof:

Notice that: ∫ ∞
0

F̄X (x) dx =
∫ ∞

0

∫ ∞
x

fX(t)dt dx

This is integrating over (t,x) ∈ R2 where 0 ≤ x ≤ t so this is equal to the integral:

=
∫ ∞

0

∫ t

0
fX(x)dxdt =

∫ ∞
0

(∫ t

0
dx

)
· fX(t)dt =

∫ ∞
0

t · fX(t)dt

Similarly we see that: ∫ 0

−∞
FX (x) dx =

∫ 0

−∞
t · fX(t)dt

And so we get that: ∫ ∞
0

F̄X (x) dx+
∫ 0

−∞
FX (x) =

∫ ∞
−∞

t · fX(t)dt = E [X]

■

Theorem 3.2.8 (The Law of the Unconscious Statistician):

If X is a vector of absolutely continuous random variables, and g : Rn −→ R is an integrable function such that
g−1

(
(a,b)

)
∈ B (R)n, then:

E [g(X)] =
∫
· · ·

∫
Rn

g(x1, . . . ,xn) · fX (x1, . . . ,xn)dx1 · · ·dxn

Specificaly we have that:

E [g(X)] =
∫ ∞
−∞

g(x) · fX(x)dx

I will provide a proof for this specific case.

Proof:

Let us prove this for the simple case that g is a constant function over an interval [a,b), that is g(x) = 1[a,b)(x). Then
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g(X) = 1[a,b](X), so g(X) is 1 when X ∈ [a,b) and 0 otherwise, this means that g(X) ∼ Ber(P (X ∈ [a,b))). So:

E [g(X)] = P (X ∈ [a,b)) =
∫ b

a
fX(x)dx =

∫
R
g(x) · fX(x)dx

Since g(x) is 0 for all reals that aren’t in [a,b).
Now suppose we have a countable partition

{
[xj−1,xj )

}
j∈J

(that is xj−1 < xj ). We define gj = 1[xj−1,xj ) for every j ∈ J . If

then we have real numbers cj and we define

g =
∑
j∈J

cj · gj

Then
g(X) =

∑
j∈J

cj · gj (X) =
∑
j∈J

cj ·1[xj−1,xj )(X)

So g(X) takes values cj and

P
(
g(X) = cj

)
= P

(
X ∈ [xj−1,xj )

)
=

∫ xj

xj−1

fX(x)dx

So all in all we have that:

E [g(X)] =
∑
j∈J

cj ·
∫ xj

xj−1

fX(x)dx =
∑
j∈J

∫ xj

xj−1

cjgj (x) · fX(x)dx =
∑
j∈J

∫ xj

xj−1

g(x) · fX(x)dx =
∫
R
g(x) · fX(x)dx

Now suppose that g is the sum of a countably infinite Now suppose we have a sequence of functions gk which
approach g from below which are constant over certain intervals, like above. So we can define:

gk(x) = inf
t∈[n·2−k ,(n+1)·2−k]

g(t)

Where n =
⌊
2k · x

⌋
, so for every t interval, gk(x) is constant. And this is a countable partition of R so by above:

E
[
gk(X)

]
=

∫
R
gk(x) · fX(x)dx

Also notice that since these partitions get finer, gk is an increasing sequence, and it converges to g.
And since gk(X) is essentially a discrete random variable, E

[
gk(X)

]
≤ E

[
gk+1(X)

]
. By the monotone convergence

theorem (which is a result of measure theory we will not be showing here), it turns out that:

E
[
gk(X)

]
↗ E [g(X)]

And ∫
R
gk(x) · fX(x)dx↗

∫
R
g(x) · fX(x)dx

And since we showed that the two sequences on the left are equal, since limits are unique, we get that:

E [g(X)] =
∫
R
g(x) · fX(x)dx

As required.
■

Theorem 3.2.9:

If X is a random variable with expectation (and variance when relevant) then

(1) If X
as
≥ 0 then E [X] ≥ 0.

(2) E [αX + βY ] = αE [X] + βE [Y ].
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(3) If X
as
≥ Y then E [X] ≥ E [Y ].

(4) If X and Y are independent E [XY ] = E [X] ·E [Y ].

(5) Var(X) ≥ 0.

(6) Var(α +X) = Var(X) and Var(αX) = α2 Var(X).

(7) If X and Y are independent then Var(X +Y ) = Var(X) + Var(Y ).

Proof:

(1) So we have that the integral of fX(x) over [0,∞) is 1 and therefore fX(x) = 0 almost always over (−∞,0). Therefore:

E [X] =
∫ ∞
−∞

x · fX(x)dx =
∫ ∞

0
x · fX(x)dx

Which is an integral of a nonnegative function and is therefore nonnegative.

(2) We know that by The Law of the Unconscious Statistician:

E [αX + βY ] =
"

R2
(αx+ βy) · fX,Y (x,y)dxdy = α

"
R2

x · fX,Y (x,y)dxdy + β

"
R2

y · fX,Y (x,y)dxdy

Notice that: "
R2

x · fX,Y (x,y)dxdy =
∫
R
x ·

∫
R
fX,Y (x,y)dydx =

∫
R
x · fX(x)dx = E [X]

And similar for y, so we get that this is equal to:

= αE [X] + βE [Y ]

As required.

(3) Since X
as
≥ Y , X −Y

as
≥ 0, so E [X −Y ] = E [X]−E [Y ] ≥ 0 and therefore E [X] ≥ E [Y ] as required.

(4) Again by the law of the unconscious statistician:

E [XY ] =
"

R2
xy · fX,Y (x,y)dydx =

"
R2

xy · fX(x) · fY (y)dydx =
∫
R
x · fX(x) ·

∫
R
y · fY (y)dydx =

=
∫
R
x · fX(x)dx ·

∫
R
y · fY (y)dy = E [X] ·E [Y ]

(5) The proofs supplied in 2.7.2 are valid here since it assumes only the traits we proved above about expectation.

■

Also note that Markov’s Inequality, Chebyshev’s Inequality, The Weak Law of Large Numbers, and theorem 2.7.7
also hold here since they only rely on these traits proved above.

Example:

If X ∼Unif[a,b] then:

FX (t) =
∫ t

a

1
b − a

dx =
t − a
b − a

If t ∈ [a,b] and if t > b then it is 1 (since the integral is 1), and if t < a it is 0. That is:

FX (t) =


t−a
b−a a ≤ t ≤ b

1 t > b

0 t < a
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And its expected value is:

E [X] =
∫ b

a
x · 1

b − a
dx =

1
b − a

· x
2

2

∣∣∣∣∣b
a

=
b2 − a2

2(b − a)
=
a+ b

2

And notice that:

E
[
X2

]
=

∫ b

a
x2 · 1

b − a
dx =

1
b − a

· b
3 − a3

3

So:

Var(X) =
b3 − a3

3(b − a)
− (b − a)2

2
=

(b − a)2

12

Example:

If X ∼ Exp(λ) then:

FX (t) =
∫ t

0
λ · e−λx dx = −e−λx

∣∣∣t
0

= 1− e−λt

For positive ts, and for negative ts it is 0, so:

FX (t) =

1− e−λt t ≥ 0
0 t < 0

Its expected value is:

E [X] =
∫ ∞

0
λx · e−λx dx =

−e−λx(λx+ 1)
λ

∣∣∣∣∣∞
0

=
1
λ

And computing its variance gives Var(X) = 1
λ2 (this is left as an exercise to the reader).

Theorem 3.2.10 (Memorylessness of Exponential Distributions):

If X is an absolutely continuous random variable, X distributes exponentially over λ if and only if X − x0 | X > x0
d= X

for every nonnegative real x0.

Proof:

In one direction, By definition we know that for every positive t:

P (X − x0 ≥ t | X > x0) =
P (X ≥ t + x0)
P (X > x0)

=
F̄X (t + x0)
F̄X (x0)

And we showed above that F̄X (x) = e−λx, so this is equal to:

= e−λ(t+x0)+λ(x0) = e−λt

And so the cummulative probability distributions are equal and therefore X − x0 | X > x0
d= X as required.

In the other direction, notice that for every nonnegative real t:

P (X ≥ t) = P (X − x0 ≥ t | X > x0) =
P (X ≥ t + x0)
P (X > x0)

And since X is absolutely continuous, this means:

F̄X (t) · F̄X (x0) = F̄X (t + x0)

Since this is true for every x0, we can set x0 = t and we get that F̄X (2t) = F̄X (t)2. Inductively, we can show that for
every n ∈ N1, F̄X (nt) = F̄X (t)n. Notice then that:

F̄X (t) = F̄X

(
n · 1

n
· t
)

= F̄X

(1
n
· t
)n
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So F̄X (t)
1
n = F̄X

(
1
n · t

)
. Now suppose that q ∈Q is a nonnegative rational, then there exists some naturals a and b such

that q = a
b . So:

F̄X (q) = F̄X

(a
b

)
= F̄X (a)

1
b

And since F̄X (a) = F̄X (1)a, this is equal to F̄X (1)
a
b = F̄X (1)q. So if we let F̄X (1) = e−λ for some real λ, we get that for

every rational q: F̄X (=)e−λq. And since the rationals are dense in R, it follows that this is true for every nonnegative
real x.
Since this is a complementary cumulative probability distribution, this λ must be positive since its limit to infinity
must be 0. And so this is the complementary cumulative distribution of an exponential distribution at least for
nonnegative xs. But it must be equal to 1 for negative xs since it is decreasing and F̄X (0) = 1. So this is exactly the

complementary cumulative probability distribution of an exponential distribution over λ, so X − x0 | X > x0
d= X as

required.
■

This sheds light on an interesting connection between exponential and geometric distributions: they are both memory-
less (by Memorylessness of Geometric Distributions). Another interesting connection is that if X has an exponential
distribution, then ⌈X⌉ has a geometric distribution! Let’s prove this quickly.

Proof:

We know that P (⌈X⌉ = x) = P (X − 1 < X ≤ x) = FX (x)− FX (x − 1), and we can then apply the formula we found above
for the cummulative distribution of exponential distributions above:

= 1− e−λx − 1 + e−λ(x−1) = e−λ(x−1)
(
1− e−λ

)
So if we define p = 1− e−λ we get that:

P (⌈X⌉ = x) = (1− p)x−1 · p

And therefore ⌈X⌉ ∼Geo(p) = Geo
(
1− e−λ

)
as required.

■

Definition 3.2.11:

An absolutely continuous random variable X has a normal distribution over µ and σ2 if it has a probability density
function:

fX(t) =
1
√

2π

1
σ
· e−

(t−µ)2

2σ2

This is denoted X ∼N
(
µ,σ2

)
.

The normal distribution is one of the single most important distributions in all of probability. The reason why will
become clear later on. But first lets investigate the distribution a bit.

Proposition 3.2.12:

If X ∼N
(
µ,σ2

)
then αX + β ∼N

(
αµ+ β,α2 · σ2

)
Proof:

We know that:

P (αX + β ∈ (a,b)) = P
(
X ∈

(
a− β
α

,
b − β
α

))
=

∫ b−β
α

a−β
α

1
√

2π
· 1
σ
· e−

(t−µ)2

2σ2 dt

(Suppose the intervals here are bidirectional, ie (a,b) = (b,a) so we don’t have to worry about negative αs.) Let’s
substitute u = αt + β. This means that dt = du

α so this is equal to:

=
∫ b

a

1
√

2π
· 1
σ ·α

· e−
(u−(αµ+β))2

2σ2α2 du
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So the probability density function of αX + β is exactly that ofN
(
αµ+ β,α2 · σ2

)
, as required.

■

So then if Z ∼ N (0,1) (this is considered the “standard” normal distribution, or the normal normal distribution), and
X ∼N

(
µ,σ2

)
then X = σ ·Z +µ.

Proposition 3.2.13:

If X ∼N
(
µ,σ2

)
then E [X] = µ and Var(X) = σ2.

Proof:

Let’s focus on the specific case of Z ∼N (0,1). We know that:∫ ∞
−∞
|t| · e−

t2
2 dt ≤

∫ ∞
−∞
|t| · e−|t| dt

Which converges, as we know. So Z has an expected value.
Furthermore, we know that fZ is symmetric about 0 (fZ (z) = fZ (−z)), so t · fZ is odd, and therefore its integral over R
is 0, so E [Z] = 0. And as we remarked above, X d= σZ +µ, so E [X] = σ E [Z] +µ = µ, as required.
And Z2 has expectation for the same reason as above, and by integration by parts:

E
[
Z2

]
=

1
√

2π
·
∫
R
t2e−

t2
2 dt =

1
√

2π
·
(
−te−

t2
2

∣∣∣∣∣∞
−∞

+
∫
R
e−t

2
dt

)
The rightmost integral is a famous integral called the Gaussian and has a known value of

√
2π, and the left term is

equal to 0, so this is equal to:

=
1
√

2π
·
√

2π = 1

And again X
d= σZ +µ so Var(X) = σ2 Var(Z) = σ2 as required.

■

Definition 3.2.14:

Due to its importance, the cumulative probability distribution of Z ∼N (0,1) gets a special symbol:

Φ (t)B FZ (t)

Notice that if X ∼N
(
µ,σ2

)
then:

FX (t) = P (X ≤ t) = P (σZ +µ ≤ t) = P
(
Z ≤

t −µ
σ

)
= Φ

( t −µ
σ

)
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3.3 Moment Generating Functions

Definition 3.3.1:

A real function f is convex in a set I if for every a ∈ I there exists an m such that for every x ∈ I :

f (x) ≥ f (a) +m(x − a)

Theorem 3.3.2:

If f is convex and X has an expected value, then:

f
(
E [X]

)
≤ E [f (X)]

Proof:

We know that there exists an m such that:

f (X) ≥ f
(
E [X]

)
+m

(
X −E [X]

)
Since E [X] is constant (it is our a). So if we take the expected value of both sides we get that

E [f (X)] ≥ E
[
f
(
E [X]

)]
+mE [X −E [X]] = f

(
E [X]

)
Since f

(
E [X]

)
is constant. As required.

■

Corollary 3.3.3:

If E
[
Xk

]
exists, then E

[
Xk−1

]
exists.

This means that if X has variance, it has expectation.

Proof:

Recall that E [Y ] exists if and only if E [|Y |] exists. And it turns out that x
k /k−1 is convex (this is something you’d prove

in calculus/analysis), so:

E
[
|X |k−1

] k
k−1 ≤ E

[
|X |k

]
So if E

[
Xk

]
exists, then E

[
|X |k

]
converges, and therefore so does E

[
|X |k−1

]
, as required.

■

Definition 3.3.4:

The kth moment of a random variable X is E
[
Xk

]
, if it exists. And the moment generating function of X, denoted

MX(t) is a function defined by:
MX(t) = E

[
et·X

]
For every t where this is defined.

Now it can be shown that expectation is linear even under infinite sums, but this requires a result from measure theory
which we will not prove here. Therefore, we get that if every one of X’s moments exists, then:

MX(t) = E
[
et·X

]
= E

 ∞∑
k=0

tk

k!
·Xk

 =
∞∑
k=0

tk

k!
·E

[
Xk

]
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And therefore the nth derivative of X’s moment generating function is:

M
(n)
X (t) =

∞∑
k=n

k! · tk−n

k! · (k −n)!
·E

[
Xk

]
=
∞∑
k=n

tk−n

(k −n)!
·E

[
Xk

]
So if we let t = 0, the summands are all 0 except for when k = n, sp this becomes:

M
(n)
X (0) = E [Xn]

So the moment generating function provides a powerful way of computing moments.

Proposition 3.3.5:

If X and Y are independent random variables, then MX+Y = MX ·MY .

Proof:

Notice that:
MX+Y (t) = E

[
etX+tY

]
= E

[
etX · etY

]
And as we showed, if X and Y are inependent then so is f (X) and f (Y ). So this is equal to:

= E
[
etX

]
·E

[
etY

]
= MX(t) ·MY (t)

As required.
■

Let’s compute the moment generating functions of a few distributions.

• If X ∼ Ber(p) then notice that etX = et with probability p and is 1 with probability 1− p. So the moment generating
function of X is

MX(t) = p · et + 1− p

• If X ∼ Bin(n,p) then X is distributively equivalent to the sum of n independent bernoulli-distributing random
variables with parameter p, and the moment generating function of a sum is the product of the moment generating
functions, so:

MX(t) = (p · et + 1− p)n

• If X ∼ Exp(λ), then:

MX(t) = E
[
etX

]
=

∫ ∞
0

etx ·λ · e−λx dx = λ ·
∫ ∞

0
ex(t−λ) dx =

λ
t −λ

· ex(t−λ)
∣∣∣∞
0

This only converges if t < λ (if they’re equal this just becomes the integral of λ which diverges). And if this is the
case we get that:

MX(t) =
λ

λ− t

• If X ∼Geo(p) then:

MX(t) = E
[
etX

]
=
∞∑
k=1

etk · p(1− p)k−1 = p · et ·
∞∑
k=1

(
et(1− p)

)k−1

This converges if and only if et(1− p) < 1, that is t < − log(1− p). If this is the case then:

MX(t) =
pet

1− et(1− p)
=

p

e−t + p − 1

• If Z ∼N (0,1) then:

MZ (t) = E
[
etX

]
=

1
√

2π

∫
R
etx · e−

x2
2 dx = e

t2
2 · 1
√

2π

∫
R
e−

t2
2 −tx+ x2

2 dx
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Notice that − t2

2 − tx+ x2

2 = − (x−t)2

2 , so this is equal to:

= e−
t2
2 · 1
√

2π

∫
R
e−

(x−t)2
2 dx

This integral is the integral of the probability density function ofN (t,1), which we know is 1. So this means:

MZ (t) = e−
t2
2

And if X
∑
N

(
µ,σ2

)
, then X

d= σZ +µ, so:

MX(t) = E
[
eσZ+µ

]
= eµ ·MZ (σt) = eµ · e−

σ2t2
2

Theorem 3.3.6 (Chernoff Bound):

If X is a random variable, then for every positive real t where MX(t) defined, for every real a:

P (X ≥ a) ≤MX(t) · e−ta

Proof:

By Markov’s Inequality:

P (X ≥ a) = P
(
etX ≥ eta

)
≤

E
[
etX

]
eta

= MX(t) · e−ta

As required.
■

Lemma 3.3.7:

If X is a random variable such that |X |
as
≤ 1 and E [X] = 0 then for every real t:

MX(t) ≤ e
t2
2

Proof:

The function x 7→ etx is convex (think second derivative), which means geometrically that the line between two points
on the graph is above the function, so if we take the points (1, et) and (−1, e−t), we get that that for every x ∈ [−1,1]:

etx ≤ et − e−t

2
· x+

et + e−t

2

So then since X ∈ [−1,1] almost surely:

MX(t) = E
[
etx

]
≤ et + e−t

2
·E [X] +

et + e−t

2

Since E [X] = 0, this is equal to:

=
et + e−t

2
≤ e

t2
2

As required.
■
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Theorem 3.3.8 (Hoeffding’s Inequality):

If {Xk}nk=1 is a sequence of independent random variables such that for every k E [Xk] = 0 and |Xk |
as
≤ 1, then:

P

 n∑
k=1

Xk ≥ a

 ≤ e−
a2
2n

Proof:

Let X be the sum of the Xks. Then MX is equal to the product of MXk
s, so by the lemma above:

MX(t) =
n∏

k=1

MXk
(t) ≤

(
e
t2
2

)n
= e

nt2
2

And by Chernoff Bound:

P (X ≥ a) ≤MX(t) · e−ta ≤ e
nt2

2 −ta

We define f (t) = e
nt2

2 −ta and we will find its minimum, so we will find its derivative:

f ′(t) = (nt − a)e
nt2

2 −ta

So f ′(t) = 0 at t = a
n . So if we input that into the inequality above, we get:

P (X ≥ a) ≤ e
a2
2n−

a2
n = e−

a2
2n

As required.
■

We can generalize this fact with the below corollary:

Corollary 3.3.9:

Suppose {Xk}nk=1 is a sequence of independent random variables such that there exists some M where for every k:

|Xk −E [Xk]|
as
≤M. Let X be the sum of the Xks, then

P (X −E [X] ≥ a) ≤ e
− a2

2nM2

Proof:

Notice that: ∣∣∣∣∣Xk −E [Xk]
M

∣∣∣∣∣ ≤ 1

And

E
[
Xk −E [Xk]

M

]
= 0

So by the theorem above we get that:

P (X −E [X] ≥ a) = P
(
X −E [X]

M
≥ a

M

)
≤ e
− a2

2nM2

As required.
■
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Note:

An important note is that if MX(t) = MY (t) for every t in some interval (−ε,ε) then X
d= Y . We will not prove this.



3.4. The Central Limit Theorem 87

3.4 The Central Limit Theorem

In this section we will return to studying normal distributions. We will see how normal distributions are actually one of,
if not the, most general distribution there is.

Definition 3.4.1:

If {Xn}∞n=1 is a sequence of random variables, then we say that:

Xn
d−→ X

If the limit of FXn
(a) is FX (a) for every real a where FX is continuous.

Why do we require that FX be continuous at a? We will demonstrate the necessity of this with the following example.

Example:

If Xn
as= Cn for some sequence Cn whose limit is C, then it would make sense that Xn

d−→ C. Now, we know that:

FXn
(a) = P (Xn ≤ a) =

1 a ≥ Cn

0 a < Cn
FX (a) =

1 a ≥ C

0 a < C

This means that FX is continuous for every a other than C. So if a ≥ C, then at some point a ≥ Cn, and therefore the
limit of FXn

(a) is 1. If a < C then at some point a < Cn and therefore the limit of FXn
(a) is 0. So we have that at every

a , C, FXn
(a)

d−→ FX (a).
But what about when a = C? Now, suppose Cn↘ C, which means that for every Cn, a < Cn. This means that FXn

(a) = 0
while FX (a) = 1.

Proposition 3.4.2:

If Xn
d−→ X and P (X = a) = 0, then

lim
n→∞

P (Xn = a) = 0

Proof:

Since P (X = a) = 0, FX is continuous at a and therefore FXn
(a) −→ FX (a). Now, suppose that P (Xn = a) doesn’t con-

verge to 0, that means that there is some subsequence of Xn, Xmn
such that P

(
Xmn

= a
)
> ε for some ε > 0. We can

assume that mn = n since Xmn

d−→ X (since every subsequence of FXn
(a) must converge to FX (a)). But we know that

for every δ > 0:
FXn

(a) = P (Xn ≤ a) ≥ P (Xn ≤ a− δ) +P (Xn = a) > P (Xn ≤ a− δ) + ε

So if we take the limit of both sides we get that:

FX (a) ≥ FX (a− δ) + ε

And since FX is continuous at a, if we take the limit of both sides as δ approaches 0+, we get that:

FX (a) ≥ lim
δ→0+

FX (a− δ) + ε = FX (a) + ε

Which is a contradiction since ε > 0.
■
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Proposition 3.4.3:

If Xn
d−→ X and a < b are two real numbers such that P (X = a) = P (X = b) = 0, then

lim
n→∞

P (Xn ∈ [a,b]) = P (X ∈ [a,b])

Proof:

We know that since P (X = a), P (X ∈ [a,b]) = FX (b)−FX (a), and

P (Xn ∈ [a,b]) = FXn
(b)−FXn

(a) +P (Xn = a)

And if we take the limit of both sides we get (since FX is continuous at a and b):

lim
n→∞

P (Xn ∈ [a,b]) = FX (b)−FX (a) = P (X ∈ [a,b])

As required
■

Proposition 3.4.4:

If {Xn}∞n=1 and X are random variables with a support in N0, then Xn
d−→ X if and only if for ever integer k:

P (Xn = k) −→ P (X = k)

Proof:

In one direction, we know that for every integer k:

P (Xn = k) = FXn
(k)−FXn

(
k − 1

2

)
−→ FX (k)−FX

(
k − 1

2

)
= P

(
X ∈

(
k − 1

2
, k

])
And since X has an integer support, this is equal to P (X = k) as required.
In the other direction, we know that:

FXn
(k) =

k∑
i=0

P (Xn = i)

And we know that the limit of this is:
k∑

i=0

P (X = i) = FX (k)

As required.
■

This proves that our previous definition of distributive limits is consistent with this one in the discrete case, so it is still
the case that

Bin
(
n,

λ
n

)
d−→ Poi(λ)

Example:

Notice that if Xn ∼ 1
n Geo

(
1
n

)
:

P (Xn ≤ x) = P (nXn ≤ xn) = 1−
(
1−

p

n

)⌊x·n⌋
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So therefore:

1−
(
1−

p

n

)x·n
≤ P (Xn ≤ x) ≤ 1−

(
1−

p

n

)x·(n−1)

The the limit of the left term is 1 − e−p·x, and so is the right term since it is the left term divided by
(
1− p

n

)x
whose

limit is 1. So:
lim
n→∞

FXn
(x) = 1− e−p·x

And therefore:
1
n

Geo
(p
n

)
d−→ Exp(p)

Theorem 3.4.5 (The Central Limit Theorem):

If {Xn}∞n=1 is a sequence of independent random variables which have the same distribution (Xn
d= X for some X),

E [Xn] = 0, and Var(Xn) = 1 then:
1
√
n
·

n∑
i=1

Xi
d−→N (0,1)

Proof:

We will let Yn B
1
n

n∑
i=1

Xi . Then since the Xis are independent we get:

MYn(t) = E
[
e

t√
n
·
∑n

i=1 Xi
]

= E

 n∏
i=1

e
t√
n
Xi

 =
n∏
i=1

E
[
e

t√
n
Xi

]
= MX

(
t
√
n

)n
So we want to show that the limit of this is MZ (t) = e

t2
2 . We do this by expanding MX(t) using taylor’s theorem:

MX(t) = E [1] + t ·E [X] +
t2

2
E
[
X2

]
+ o

(
t2

)
We know E [X] = 0 and 1 = Var(X) = E

[
X2

]
−E [X]2 = E

[
X2

]
, so:

MX(t) = 1 +
t2

2
+ o

(
t2

)
And therefore:

MX

(
t
√
n

)n
=

(
1 +

t2

2n
+ o

(
t2

n

))n
Now, we know that for every c > 0, at some point o

(
t2

n

)
≤ c · t2

2n , so we get that:(
1 +

t2

2n

)n
≤MX

(
t
√
n

)n
≤

(
1 +

(1 + c)t2

2n

)n
And so we get that:

lim
n→∞

MX

(
t
√
n

)n
≥ e

t2
2

And for every c > 0:

lim
n→∞

MX

(
t
√
n

)n
≤ e

(1+c)t2
2n

And this means that (by taking the infimum):

lim
n→∞

MX

(
t
√
n

)n
≤ e

t2
2
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And therefore:

lim
n→∞

MX

(
t
√
n

)n
= e

t2
2

As required.
■

Corollary 3.4.6:

If {Xn}∞n=1 is a set of independent random variables with the same distribution as X, and E [Xn] = µ and Var(Xn) = σ2

then: ∑n
i=1Xi −nµ
σ ·
√
n

d−→N (0,1)

Proof:

We know that:

E
[∑n

i=1Xi −nµ
σ ·
√
n

]
=

1
σ ·
√
n
· (n ·µ−n ·µ) = 0

And:

Var
(∑n

i=1Xi −nµ
σ ·
√
n

)
=

1
nσ2 ·Var

 n∑
i=1

Xi

 =
n

nσ2 · σ
2 = 1

So by the theorem above, we get that ∑n
i=1Xi −nµ
σ ·
√
n

d−→N (0,1)

What this means is that for large enough ns, the sum of Xis has the approximate distribution:

n∑
i=1

Xi
approx∼ σ ·

√
n ·N (0,1) +nµ =N

(
nµ,nσ2

)
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