Voter Model with stubborn vertices.(A random walk exercise in disguise)
Hint - remember the graphical representation and time reversal. (there could be other ways)

1. Let G be the segment $[1, \mathrm{n}]$. i.e. $G=(V, E), V=\{1,2, \ldots, n\}, E=\{(1,2),(2,3), \ldots,(n-1, n)\}$.

Assume we put two "stubborn agents" at the endpoints. The agent at 1 always thinks " 0 ", and the agent at n always thinks " 1 " (they never change their opinions). The rest of the vertices start with iid $1 / 20-1$ opinions. Let $\eta_{t}(k)$ denote the opinion of vertex k at time t .
Find $\lim _{t \rightarrow \infty} P\left(\eta_{t}(k)=1\right)$? Does this depend on the initial distribution?
2. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be some finite, connected graph. Let O, Z be two distinct vertices in V .

Put stubborn agents in O (always 1) and in Z (always 0).
What can you say about $f(v)=\lim _{t \rightarrow \infty} P\left(\eta_{t}(v)=1\right)$?
What if there were 3 stubborn vertices with 3 different opinions 1,2,3 ?
3. What about $\mathrm{G}=\mathrm{Z}$ and a (single) stubborn agent at the origin. (and iid $1 / 2$ everywhere else). What is $\lim _{t \rightarrow \infty} P\left(\eta_{t}(k)=1\right)$?
4. What about when $\mathrm{G}=\mathrm{Z}^{\wedge} 3$ and there is a stubborn agent at the origin? (and everything else iid $1 / 2$)

Bootstrap Percolation

In Bootstrap percolation with parameter r, each site has an color in \{black,white\}, and every time step (discrete time) every vertex that has at least r black neighbors is colored black.
(see http://mathworld.wolfram.com/BootstrapPercolation.html for some examples with $r=2$ on the square grid)

Let $P(G, p, r)$ be the probability that when starting with an intial configuration where every vertex is black with probability p, iid between vertices, every site will be eventually black.

Let $p _c(G, r)=i n f\{p: P(G, p, r)>0\}$
0. Prove that every vertex eventually fixates.

1. Find an infinite connected, finite degrees graph G, and some p, r so that $0<P(G, p, r)<1$ (i.e. not 0 or 1).
2. (riddle): For an $n \times n$ board (e.g. uncolored chessboard), what is the minimal number of squares that can be colored black so that eventually the whole board is black.
3. Prove that $p _c\left(Z^{\wedge} 2,2\right)=0$ (Hint show that a large box of blacks has a positive probability to take over the world)
Remark: Actually, much more precise statements are known. For an LxL grid, the right critical probability is of order $c / \log L, c$ is known, and even more, see https://www.math.ubc.ca/~holroyd/boot/
4. Prove that $p_{-} c\left(Z^{\wedge} 2,3\right)=1$.
5. Prove that $p _c\left(T _3,2\right)=1 / 2$, where $T _3$ is the 3 -regular tree.
