- 1 Prove that an affine variety U is irreducible if and only if its projective closure \overline{U} is irreducible.
- 2 Associate with any affine variety $U \subset \mathbb{A}_0^n$ its projective closure \overline{U} in \mathbb{P}^n . Prove that this defines a one-to-one correspondence between the affine subvarieties of \mathbb{A}_0^n and the projective subvarieties of \mathbb{P}^n with no components contained in the hyperplane $S_0 = 0$.
- 3 Prove that the variety $X = \mathbb{A}^2 \setminus (0,0)$ is not isomorphic to an affine variety. [Hint: Compute the ring k[X] of regular functions on X, and use the fact that if Y is an affine variety, every proper ideal $\mathfrak{A} \subsetneq k[Y]$ defines a nonempty set.]
- 4 Prove that any quasiprojective variety is open in its projective closure.
- **5** Prove that every rational map $\varphi \colon \mathbb{P}^1 \to \mathbb{P}^n$ is regular.
- **6** Prove that any regular map $\varphi \colon \mathbb{P}^1 \to \mathbb{A}^n$ maps \mathbb{P}^1 to a point.
- 7 Define a birational map f from an irreducible quadric hypersurface $X \subset \mathbb{P}^3$ to the plane \mathbb{P}^2 by analogy with the stereographic projection of Example 1.22. At which points is f not regular? At which points is f^{-1} not regular?
- **8** In Exercise 7, find the open subsets $U \subset X$ and $V \subset \mathbb{P}^2$ that are isomorphic.

Scanned by CamScanner

9 Prove that the map $y_0 = x_1x_2$, $y_1 = x_0x_2$, $y_2 = x_0x_1$ defines a	birational map of
\mathbb{P}^2 to itself. At which points are f and f^{-1} not regular? What	are the open sets
mapped isomorphically by f ? (Compare Section 3.5, Chapter 4.)	

- 10 Prove that the Veronese image $v_m(\mathbb{P}^n) \subset \mathbb{P}^N$ is not contained in any linear subspace of \mathbb{P}^N .
- 11 Prove that the variety $\mathbb{P}^2 \setminus X$, where X is a plane conic, is affine. [Hint: Use the Veronese embedding.]