- 1 Let $L \subset \mathbb{P}^n$ be an (n-1)-dimensional linear subspace, $X \subset L$ an irreducible closed variety and y a point in $\mathbb{P}^n \setminus L$. Join y to all points $x \in X$ by lines, and denote by Y the set of points lying on all these lines, that is, the cone over X with vertex y. Prove that Y is an irreducible projective variety and dim $Y = \dim X + 1$.
- **2** Let $X \subset \mathbb{A}^3$ be the reducible curve whose components are the 3 coordinate axes. Prove that the ideal \mathfrak{A}_X cannot be generated by 2 elements.
- 3 Let $X \subset \mathbb{P}^2$ be the reducible 0-dimensional variety consisting of 3 points not lying on a line. Prove that the ideal \mathfrak{A}_X cannot be generated by 2 elements.
- **4** Prove that any finite set $S \subset \mathbb{A}^2$ can be defined by two equations. [Hint: Choose the coordinates x, y in \mathbb{A}^2 in such a way that all points of S have different x coordinates; then show how to define S by the two equations y = f(x), $\prod (x \alpha_i) = 0$, where f(x) is a polynomial.]
- 5 Prove that any finite set of points $S \subset \mathbb{P}^2$ can be defined by two equations.
- **6** Let $X \subset \mathbb{A}^3$ be an algebraic curve, and x, y, z coordinates in \mathbb{A}^3 ; suppose that X does not contain a line parallel to the z-axis. Prove that there exists a nonzero polynomial f(x, y) vanishing at all points of X. Prove that all such polynomials form a principal ideal (g(x, y)), and that the curve g(x, y) = 0 in \mathbb{A}^2 is the closure of the projection of X onto the (x, y)-plane parallel to the z-axis.
- 7 We use the notation of Exercise 6. Suppose that $h(x, y, z) = g_0(x, y)z^n + \cdots + g_n(x, y)$ is the irreducible polynomial of smallest positive degree in z contained in the ideal \mathfrak{A}_X . Prove that if $f \in \mathfrak{A}_X$ has degree m as a polynomial in z, then we can write $fg_0^m = hU + v(x, y)$, where v(x, y) is divisible by g(x, y). Deduce that the equation h = g = 0 defines a reducible curve consisting of X together with a finite number of lines parallel to the x-axis, defined by $g_0(x, y) = g(x, y) = 0$.
- 8 Use Exercises 6-7 to prove that any curve $X \subset \mathbb{A}^3$ can be defined by 3 equations.
- **9** By analogy with Exercises 6–8, prove that any curve $X \subset \mathbb{P}^3$ can be defined by 3 equations.
- 10 Let $F_0(x_0, ..., x_n), ..., F_n(x_0, ..., x_n)$ be forms of degree $m_0, ..., m_n$ and consider the system of n+1 equations in n+1 variables $F_0(x) = ... = F_n(x) = 0$. Write Γ for the subset of $\prod_{i=0}^n \mathbb{P}^{\nu_{n,m_i}} \times \mathbb{P}^n$ (where $\nu_{n,m} = \binom{n+m}{m} 1$) defined by

$$\Gamma = \{(F_0, \dots, F_n, x) \mid FS$$
 canned by GamScanner

By considering the two projection maps $\varphi \colon \Gamma \to \prod_i \mathbb{P}^{\nu_{n,m_i}}$ and $\psi \colon \Gamma \to \mathbb{P}^n$, prove that dim $\Gamma = \dim \varphi(\Gamma) = \sum_i \nu_{n,m_i} - 1$. Deduce from this that there exists a polynomial $R = R(F_0, \dots, F_n)$ in the coefficients of the forms F_0, \dots, F_n such that R = 0 is a necessary and sufficient condition for the system of n+1 equations in n+1 variables to have a nonzero solution. What is the polynomial R if the forms F_0, \dots, F_n are linear?

- 11 Prove that the Plücker hypersurface $\Pi \subset \mathbb{P}^5$ contains two systems of 2-dimensional linear subspaces. A plane of the first system is defined by a point $\xi \in \mathbb{P}^3$ and consists of all points of Π corresponding to lines $l \subset \mathbb{P}^3$ through ξ . A plane of the second system is defined by a plane $\Xi \subset \mathbb{P}^3$ and consists of all points of Π corresponding to lines $l \subset \mathbb{P}^3$ contained in Ξ . There are no other planes contained in Π .
- 12 Let $F(x_0, x_1, x_2, x_3)$ be an arbitrary form of degree 4. Prove that there exists a polynomial Φ in the coefficients of F such that $\Phi(F) = 0$ is a necessary and sufficient condition for the surface F = 0 to contain a line.
- 13 Let $Q \subset \mathbb{P}^3$ be an irreducible quadric surface and $\Lambda_X \subset \Pi$ the set of points on the Plücker hypersurface $\Pi \subset \mathbb{P}^5$ corresponding to lines contained in Q. Prove that Λ_X consists of two disjoint conics.