Problem assignment 2.

Algebraic Geometry and Commutative Algebra

Joseph Bernstein

27-10-2015.

Remark. In this assignment you can freely use the Nullstellensatz and Serre's lemma but you should specify when you use them. For an algebraic variety X we denote by $\mathcal{O}(X)$ the algebra of global regular functions on X.

[P] 1. Let V be a finite dimensional vector space over k. Fix a natural number l and consider the set $GR_l(V)$ of all l-dimensional subspaces $L \subset V$.

Show how to describe a structure of algebraic variety on this set (this variety is called the **Gassmannian** of l-dimensional subspaces of V).

Hint. Consider the standard l-dimensional vector space $L = k^l$ and denote by H the vector space Hom(L, V). Introduce on H the structure of an algebraic variety. Show that the subset $St(V) \subset H$ consisting of all imbeddings is an open subvariety in H (it is called the Stiffel variety).

Show that the group G = GL(l, k) acts naturally on St(V) and the quotient set is naturally identified with $Gr_l(V)$. Use the natural projection $p: St(V) \to Gr_l(V)$ to introduce the structure of a space with functions on $Gr_l(V)$.

[P] 2. Let X be an algebraic variety obtained from projective plane \mathbf{P}^2 by removing one point. Describe the algebra $\mathcal{O}(X)$ of global regular functions on X.

Definition. (Top) Let X be a topological space. A subset $Y \subset X$ is called **locally closed** if it satisfies the following equivalent conditions

- (i) Y is an intersection of an open and a closed subsets of X.
- (ii) Y is locally closed, i.e. any point $x \in Y$ has an open neighborhood U such that $U \cap Y$ is closed in U .
 - (iii) Y is open in cl(Y) (here cl(A) is the closure of A).

Check that these conditions are equivalent.

3. Let X be an algebraic variety and $Z \subset X$ a locally closed subset. Show that Z has a canonical structure of an algebraic variety.

Here you should use the following finiteness lemma that we will prove soon

Lemma. Let X be an affine algebraic variety and let U be any open subset of X. Then U can be covered by a finite number of basic open subsets X_f .

[P] 4. Let V be a finite dimensional vector space over k and $X = \mathbf{P}(V)$ the corresponding projective space. We would like to describe the algebraic structure of this space in more detail. Later we will use this description many times.

Denote by A the algebra of polynomial functions on V. This is a graded algebra $A = \bigoplus A^k$.

Given a homogeneous polynomial $f \in A^k$ with k > 0 we consider the corresponding basic open subset $V_f \subset \mathbf{V}$ and denote by X_f its image in the projective space X.

- (i) Show that the sets X_f form a basis of the Zariski topology on X.
- (ii) Show that every subset X_f is an affine algebraic variety and the algebra of regular functions $\mathcal{O}(X_f)$ is isomorphic to the subalgebra A_f^0 of functions of degree 0 in the graded algebra A_f .

In order to do this you will need a result from linear algebra described in the next problem.

Definition. (LA) Let H be a group. By definition a **character** of H is a homomorphism $\chi: H \to k^*$. Suppose we fixed an action of the group H on a k-vector space L. For any character χ of H we consider eigen subspace

$$L^{\chi} := \{ v \in L | hv = \chi(h)v \text{ for all } h \in H \}$$

[P] 5. (LA). Let a group H act on a space L. Fix a collection of characters $\chi_1, ..., \chi_m$ of H pairwise distinct.

Suppose we have an equality in L of the form $v = \sum_i v_i$, where $v_i \in L^{\chi_i}$. Show that every vector v_i can be written as a linear combination of vectors hv for some elements $h \in H$.

In particular show that if v = 0 then all vectors v_i are 0.

- ∇ **6.** Let A be a finitely generated k-algebra (commutative, with 1). Consider the set $M(A) := \operatorname{Mor}_{k-alg}(A,k)$.
- (i) Describe Zariski topology on the set M(A). Show that the set M(A) has a natural structure of an affine algebraic variety. In particular describe the algebra of regular functions $\mathcal{O}(M(A))$.
- (ii) Given a morphism of k-algebras $\mu: B \to A$ show that the corresponding map $\nu: M(A) \to M(B)$ is a morphism of affine algebraic varieties.

Give an example of different morphisms of algebras that give the same morphism of varieties.

- 7. Show that the category Alg_k of algebraic varieties over the field k has product.
- **8.** Let X be an algebraic variety. Consider the diagonal morphism $\Delta: X \to X \times X$.
- (i) Show that the image $Z = \Delta(X)$ is a locally closed subvariety and that Δ defines an isomorphism of algebraic varieties $\Delta: X \to Z$.
- (ii) Variety X is called **separated** if subset $\Delta(X)$ is closed in $X \times X$. Show that this is equivalent to the following condition
- (Sep) If $U, V \subset X$ are open affine subsets, then the subset $W = U \cap V$ is also an open affine subset and the algebra O(W) is generated by images of algebras O(U) and O(V).
- **9.** (i) Consider an action ρ of the group G_m on the variety $X = \mathbf{A}^2 \setminus 0$ given by $\rho(a)(x,y) = (ax,ay)$. Show that the variety $Y = X/G_M$ is glued from two copies of the affine line \mathbf{A}^1 . Describe the gluing explicitly in coordinates. Show that the variety Y is separated.
- (ii) Consider an action η of the group G_m on the variety $X = \mathbf{A}^2 \setminus 0$ given by $\eta(a)(x,y) = (ax, a^{-1}y)$. Show that the variety $Z = X/G_M$ is glued from two copies of the affine line \mathbf{A}^1 . Describe the gluing explicitly in coordinates. Show that the variety Z is not separated.
 - 10. Let X be a separated algebraic variety. Prove the following property.

Uniqueness of extensions of morphisms. Let Z be an algebraic variety and $U \subset Z$ an open dense subset (dense means that closure of U is Z). Suppose we have a morphism of algebraic varieties $\mu: U \to X$ and we would like to extend it to a morphism $\nu: Z \to X$. Then the morphism ν is uniquely defined (if it exists).

Show by example that this is not always true if X is not separated.