הבדלים בין גרסאות בדף "קוד:אפיון ערכים עצמיים"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
שורה 7: שורה 7:
 
$\lambda \in\mathbb{F}$\textbf{ הוא ערך עצמי של מטריצה }$A\in M_{n}(\mathbb{F})$\textbf{ אם ורק אם }$\det\left (\lambda I-A\right )=0$\textbf{.}
 
$\lambda \in\mathbb{F}$\textbf{ הוא ערך עצמי של מטריצה }$A\in M_{n}(\mathbb{F})$\textbf{ אם ורק אם }$\det\left (\lambda I-A\right )=0$\textbf{.}
  
<textit>הוכחה:</textit>
+
\textit{הוכחה:}
  
 
$\lambda \in\mathbb{F}$ הוא ע"ע של $A$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$Av=\lambda v$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\lambda v-Av=0$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\left (\lambda I-A\right )v=0$ $\Leftrightarrow$ המטריצה $\lambda I-A$ אינה הפיכה $\Leftrightarrow$ $\det(\lambda I-A)=0$.
 
$\lambda \in\mathbb{F}$ הוא ע"ע של $A$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$Av=\lambda v$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\lambda v-Av=0$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\left (\lambda I-A\right )v=0$ $\Leftrightarrow$ המטריצה $\lambda I-A$ אינה הפיכה $\Leftrightarrow$ $\det(\lambda I-A)=0$.
  
 
המשפט מאפשר לנו לחשב ערכים עצמיים מבלי לנסות לכפול וקטורים במטריצה בתקווה ש"ייצא טוב". לפי המשפט, כדי למצוא ערכים עצמיים של המטריצה נוכל לפתור את המשוואה $\det\left (\lambda I-A\right )=0$. זהו פולינום ממעלה $n$, ובהמשך נקרא לו הפולינום האופייני של $A$, והוא ישחק תפקיד חשוב בתיאוריה שלנו.
 
המשפט מאפשר לנו לחשב ערכים עצמיים מבלי לנסות לכפול וקטורים במטריצה בתקווה ש"ייצא טוב". לפי המשפט, כדי למצוא ערכים עצמיים של המטריצה נוכל לפתור את המשוואה $\det\left (\lambda I-A\right )=0$. זהו פולינום ממעלה $n$, ובהמשך נקרא לו הפולינום האופייני של $A$, והוא ישחק תפקיד חשוב בתיאוריה שלנו.

גרסה מ־15:24, 11 באוגוסט 2014

\textit{תזכורת:}

$A$ איננה הפיכה אם ורק אם $\det\left (A\right )=0$.

\textbf{משפט:}

$\lambda \in\mathbb{F}$\textbf{ הוא ערך עצמי של מטריצה }$A\in M_{n}(\mathbb{F})$\textbf{ אם ורק אם }$\det\left (\lambda I-A\right )=0$\textbf{.}

\textit{הוכחה:}

$\lambda \in\mathbb{F}$ הוא ע"ע של $A$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$Av=\lambda v$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\lambda v-Av=0$ $\Leftrightarrow$ קיים $v\ne 0$ כך ש-$\left (\lambda I-A\right )v=0$ $\Leftrightarrow$ המטריצה $\lambda I-A$ אינה הפיכה $\Leftrightarrow$ $\det(\lambda I-A)=0$.

המשפט מאפשר לנו לחשב ערכים עצמיים מבלי לנסות לכפול וקטורים במטריצה בתקווה ש"ייצא טוב". לפי המשפט, כדי למצוא ערכים עצמיים של המטריצה נוכל לפתור את המשוואה $\det\left (\lambda I-A\right )=0$. זהו פולינום ממעלה $n$, ובהמשך נקרא לו הפולינום האופייני של $A$, והוא ישחק תפקיד חשוב בתיאוריה שלנו.