אלגברה לינארית - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 487: שורה 487:


===פרישה ותלות לינארית===
===פרישה ותלות לינארית===
*יהי <math>V</math> מ"ו מעל שדה <math>\mathbb{F}</math> ותהי <math>S\subseteq V</math>.
**וקטור <math>x\in V</math> נקרא '''צירוף לינארי''' של הקבוצה <math>S</math> אם <math>x=0_V</math> או קיימים וקטורים בקבוצה <math>v_1,...,v_n\in S</math> וסקלרים מהשדה <math>a_1,...,a_n\in\mathbb{F}</math> כך ש <math>x=a_1v_1+...+a_nv_n</math>
*כלומר, ניתן "ליצור" את x בעזרת פעולות המרחב הוקטורי על הקבוצה S (או שx=0)
*אוסף כל הוקטורים במרחב שהם צירופים לינאריים של S נקרא <math>span(S)</math>.
*טענה: יהי V מ"ו ותהי <math>S\subseteq V</math> אזי <math>span(S)</math> הוא תת המרחב הקטן ביותר שמכיל את <math>S</math>. כלומר:
**<math>span(S)</math> תת מרחב וקטורי
**לכל תת מרחב <math>T</math> כך ש <math>S\subseteq T</math> מתקיים כי <math>S\subseteq span(S)\subeteq T</math>


<videoflash>4hLYHhGE-68</videoflash>
<videoflash>4hLYHhGE-68</videoflash>

גרסה מ־07:04, 21 ביולי 2020

חומר עזר

סרטוני ותקציר הרצאות

פרק 1 - שדות

הגדרה ותכונות של שדה

  • שדה הוא קבוצה [math]\displaystyle{ \mathbb{F} }[/math] יחד עם שתי פעולות [math]\displaystyle{ +,\cdot }[/math] כך שמתקיימות התכונות הבאות:
  1. סגירות: לכל [math]\displaystyle{ a,b\in\mathbb{F} }[/math] מתקיים כי [math]\displaystyle{ a+b,a\cdot b\in\mathbb{F} }[/math]
  2. קומוטטיביות (חילופיות): לכל [math]\displaystyle{ a,b\in\mathbb{F} }[/math] מתקיים כי [math]\displaystyle{ a+b=b+a }[/math] וכן [math]\displaystyle{ a\cdot b=b\cdot a }[/math]
  3. אסוציאטיביות (קיבוץ): לכל [math]\displaystyle{ a,b,c\in\mathbb{F} }[/math] מתקיים כי [math]\displaystyle{ a+(b+c)=(a+b)+c }[/math] וכן [math]\displaystyle{ a\cdot (b\cdot c)=(a\cdot b)\cdot c }[/math]
  4. נייטרליים: קיימים [math]\displaystyle{ 0_{\mathbb{F}}\neq 1_{\mathbb{F}}\in\mathbb{F} }[/math] כך שלכל [math]\displaystyle{ a\in\mathbb{F} }[/math] מתקיים כי [math]\displaystyle{ 0_{\mathbb{F}}+a=1_{\mathbb{F}}\cdot a = a }[/math]
  5. נגדיים: לכל [math]\displaystyle{ a\in\mathbb{F} }[/math] קיים נגדי [math]\displaystyle{ -a\in\mathbb{F} }[/math] כך ש [math]\displaystyle{ a+(-a)=0_{\mathbb{F}} }[/math]
  6. הופכיים: לכל [math]\displaystyle{ 0_{\mathbb{F}}\neq a\in \mathbb{F} }[/math] קיים הופכי [math]\displaystyle{ a^{-1}\in \mathbb{F} }[/math] כך ש [math]\displaystyle{ a\cdot a^{-1}=1_{\mathbb{F}} }[/math]
  7. דיסטריביוטיביות (פילוג): לכל [math]\displaystyle{ a,b,c\in\mathbb{F} }[/math] מתקיים כי [math]\displaystyle{ a\cdot(b+c)=a\cdot b+a\cdot c }[/math]



  • יהי שדה [math]\displaystyle{ \mathbb{F} }[/math] אזי לכל [math]\displaystyle{ a,b\in\mathbb{F} }[/math] מתקיים כי [math]\displaystyle{ a\cdot b=0_{\mathbb{F}} }[/math] אם ורק אם [math]\displaystyle{ a=0_{\mathbb{F}} }[/math] או [math]\displaystyle{ b=0_{\mathbb{F}} }[/math]



  • תכונות נוספות של שדות
    • [math]\displaystyle{ (-1_{\mathbb{F}})\cdot a = -a }[/math]
    • אם [math]\displaystyle{ a+b=a+c }[/math] אזי [math]\displaystyle{ b=c }[/math]
    • אם [math]\displaystyle{ a\neq 0_{\mathbb{F}} }[/math] וגם [math]\displaystyle{ a\cdot b = a\cdot c }[/math] אזי [math]\displaystyle{ b=c }[/math]

שדות סופיים

שדה המרוכבים

הגדרת המספרים המרוכבים

  • [math]\displaystyle{ \mathbb{C}=\{(a,b)|a,b\in\mathbb{R}\} }[/math]
  • [math]\displaystyle{ (a,b)+(c,d)=(a+b,c+d) }[/math]
  • [math]\displaystyle{ (a,b)\cdot (c,d)=(ac-bd,ad+bc) }[/math]


  • נסמן
    • [math]\displaystyle{ a=(a,0) }[/math]
    • [math]\displaystyle{ i=(0,1) }[/math]
  • נובע כי [math]\displaystyle{ a+b\cdot i =(a,b) }[/math]


  • הגדרות עבור [math]\displaystyle{ z=a+b\cdot i }[/math]
    • [math]\displaystyle{ \overline{Z}=a-b\cdot i }[/math]
    • [math]\displaystyle{ |z|=\sqrt{a^2+b^2} }[/math]
    • [math]\displaystyle{ Re(z)=a }[/math]
    • [math]\displaystyle{ Im(z)=b }[/math]


  • תכונות
    • [math]\displaystyle{ z^{-1}=\frac{\overline{z}}{|z|^2} }[/math] אם [math]\displaystyle{ z\neq 0 }[/math]
    • [math]\displaystyle{ z+\overline{z}=2\cdot Re(z) }[/math]
    • [math]\displaystyle{ z-\overline{z}=2\cdot i\cdot Im(z) }[/math]
    • [math]\displaystyle{ \overline{z+ w}=\overline{z}+ \overline{w} }[/math]
    • [math]\displaystyle{ \overline{z\cdot w}=\overline{z}\cdot \overline{w} }[/math]


צורה קרטזית וצורה קוטבית (פולרית)

  • [math]\displaystyle{ a+b\cdot i = r\cdot cis(\theta) }[/math]
  • [math]\displaystyle{ cis(\theta)=\cos(\theta)+i\cdot \sin(\theta) }[/math]
  • [math]\displaystyle{ r=\sqrt{a^2+b^2} }[/math]
  • עבור הזוית נחלק למקרים:
    • אם [math]\displaystyle{ a\gt 0 }[/math] אזי [math]\displaystyle{ \theta=arctan\left(\frac{b}{a}\right) }[/math]
    • אם [math]\displaystyle{ a=0 }[/math] וגם [math]\displaystyle{ b\gt 0 }[/math] אזי [math]\displaystyle{ \theta=\frac{\pi}{2} }[/math]
    • אם [math]\displaystyle{ a=0 }[/math] וגם [math]\displaystyle{ b\lt 0 }[/math] אזי [math]\displaystyle{ \theta=-\frac{\pi}{2} }[/math]
    • אם [math]\displaystyle{ a\lt 0 }[/math] אזי [math]\displaystyle{ \theta=arctan\left(\frac{b}{a}\right)+\pi }[/math]



  • [math]\displaystyle{ r_1 cis(\theta_1)r_2 cis(\theta_2)=r_1r_2cis(\theta_1+\theta_2) }[/math]



  • [math]\displaystyle{ (r cis(\theta))^n = r^n cis(n\theta) }[/math]


  • עבור [math]\displaystyle{ n\geq 2 }[/math] טבעי, ומספר מרוכב [math]\displaystyle{ a+b\cdot i\neq 0 }[/math] קיימים בדיוק n פתרונות למשוואה [math]\displaystyle{ z^n=a+b\cdot i }[/math]
  • הנוסחא למציאת כל הפתרונות השונים:
    • נעביר את המספר לצורתו הקוטבית [math]\displaystyle{ a+b\cdot i = r cis(\theta) }[/math]
    • הפתרונות הם [math]\displaystyle{ z_k = \sqrt[n]{r} cis\left(\frac{\theta+2\pi k}{n}\right) }[/math] עבור [math]\displaystyle{ k=0,1,...,n-1 }[/math]


תרגול

פרק 2- מערכות משוואות לינאריות

מבוא למטריצות ולמערכות משוואות לינאריות

  • [math]\displaystyle{ \mathbb{F}^n=\{(x_1,...,x_n)|\forall i:x_i\in\mathbb{F}\} }[/math] קבוצת הn-יות הסדורות.
  • [math]\displaystyle{ \mathbb{F}^{n\times m} }[/math] קבוצת המטריצות עם n שורות וm עמודות, ואיברים מהשדה [math]\displaystyle{ \mathbb{F} }[/math]


הגדרת מערכת משוואות לינארית וקבוצת פתרונות

  • מערכת משוואות לינארית היא זוג של מטריצת מקדמים [math]\displaystyle{ A\in\mathbb{F}^{m\times n} }[/math] ומטריצת (וקטור) קבועים [math]\displaystyle{ \vec{b}\in\mathbb{F}^{n\times 1} }[/math].
  • קבוצת הפתרונות למערכת המשוואות הלינארית היא קבוצת כל הn-יות המקיימות:
  • [math]\displaystyle{ \begin{cases} a_{11}x_1+...+a_{1n}x_n=b_1\\ \vdots \\ a_{m1}x_1+...+a_{mn}x_n=b_m \end{cases} }[/math]


פעולות דירוג אלמנטריות

  • שלושת פעולות הדירוג האלמנטריות:
    • [math]\displaystyle{ \alpha R_i }[/math] עבור [math]\displaystyle{ 0\neq \alpha\in\mathbb{F} }[/math] (כפל שורה במטריצה בסקלר שונה מאפס)
    • [math]\displaystyle{ R_i+\alpha R_j }[/math] עבור [math]\displaystyle{ i\neq j }[/math] (הוספה לשורה קבוע כפול שורה אחרת)
    • [math]\displaystyle{ R_i \leftrightarrow R_j }[/math] (החלפת שתי שורות במטריצה זו בזו)


ייצוג מערכת משוואות בעזרת מטריצה


צורה מדורגת וצורה מדורגת קנונית

  • איבר בשורה נקרא פותח/מוביל/ציר אם הוא הראשון משמאל בשורה ששונה מאפס.
  • מטריצה נקראת מדורגת אם:
    • אם יש שורות אפסים, כולן בתחתית.
    • כל איבר פותח נמצא מימין לאיברים הפותחים בשורות מעליו.
  • מטריצה נקראת מדורגת קנונית אם:
    • היא מדורגת.
    • כל האיברים הפותחים שווים ל1.
    • בכל עמודה בה יש איבר פותח, כל האיברים מעליו שווים ל0.


משתנים חופשיים ותלויים

  • משתנה נקרא תלוי אם בצורה המדורגת של המטריצה יש איבר פותח בעמודה המתאימה לו.
  • כל משתנה שאינו תלוי, נקרא משתנה חופשי.
  • מציאת כמות הפתרונות של מערכת משוואות לינארית:
    • מדרגים את המטריצה שמייצגת את המערכת.
    • אם יש שורת סתירה, אין פתרון למערכת.
    • אם אין שורת סתירה, ואין משתנים חופשיים (כל המשתנים תלויים) אז יש פתרון יחיד למערכת.
    • אם אין שורת סתירה, ויש משתנים חופשיים, כמות הפתרונות היא מספר האיברים בשדה בחזקת מספר המשתנים החופשיים.


  • מציאת הפתרון הכללי של מערכת משוואות לינארית:
    • מדרגים קנונית את המטריצה שמייצת את המערכת.
    • מוודאים שאין שורת סתירה.
    • בכל משתנה חופשי מציבים פרמטר.
    • מבטאים את המשתנים התלויים באמצעות הפרמטרים שהצבנו.


דירוג מטריצה עם פרמטר


הוכחת קיום ויחידות צורה מדורגת קנונית

תרגול

פרק 3 - אלגברת מטריצות

חיבור מטריצות וכפל בסקלר

  • תהיינה [math]\displaystyle{ A,B\in\mathbb{F}^{n\times m} }[/math] ויהי סקלר [math]\displaystyle{ \alpha\in\mathbb{F} }[/math]
    • נגדיר את [math]\displaystyle{ A+B\in\mathbb{F}^{n\times m} }[/math] על ידי [math]\displaystyle{ [A+B]_{ij}=[A]_{ij}+[B]_{ij} }[/math]
    • נגדיר את [math]\displaystyle{ \alpha A\in\mathbb{F}^{n\times m} }[/math] על ידי [math]\displaystyle{ [\alpha A]_{ij} = \alpha [A]_{ij} }[/math]


כפל מטריצות

  • [math]\displaystyle{ \sum_{k=1}^n a_k = a_1+a_2+\cdots +a_n }[/math]
  • [math]\displaystyle{ \prod_{k=1}^n a_k = a_1\cdot a_2\cdots a_n }[/math]


  • תהיינה [math]\displaystyle{ A\in\mathbb{F}^{n\times m},B\in\mathbb{F}^{m\times k} }[/math]
    • נגדיר את המכפלה [math]\displaystyle{ AB\in\mathbb{F}^{n\times k} }[/math] על ידי
    • [math]\displaystyle{ [AB]_{ij}=R_i(A)C_j(B)=\sum_{p=1}^m[A]_{ip}[B]_{pj} }[/math]



  • הוקטור [math]\displaystyle{ \vec{x} }[/math] הוא פתרון למערכת המשוואות עם מטריצת המקדמים [math]\displaystyle{ A }[/math] ווקטור הקבועים [math]\displaystyle{ \vec{b} }[/math] אם ורק אם [math]\displaystyle{ A\cdot \vec{x}=\vec{b} }[/math]



שיטות לחישוב כפל מטריצות


  • חישוב הכפל לפי עמודות
    • [math]\displaystyle{ \begin{pmatrix} | & & |\\ v_1 & \cdots & v_n \\ | & & |\\ \end{pmatrix} \begin{pmatrix} x_1\\ \vdots \\ x_n \end{pmatrix}=x_1v_1 + \cdots x_nv_n }[/math]
    • [math]\displaystyle{ C_i(AB)=AC_i(B) }[/math]
  • חישוב הכפל לפי שורות
    • [math]\displaystyle{ \begin{pmatrix} x_1 & \cdots & x_n\\ \end{pmatrix} \begin{pmatrix} - & v_1 & - \\ & \vdots & \\ - & v_n & - \end{pmatrix}=x_1v_1 + \cdots x_nv_n }[/math]
    • [math]\displaystyle{ R_i(AB)=R_i(A)B }[/math]


תכונות של אלגברת מטריצות

  • [math]\displaystyle{ A(B+C)=AB+AC }[/math] וכן [math]\displaystyle{ (A+B)C=AC+BC }[/math]
  • [math]\displaystyle{ \alpha(AB) = (\alpha A)B = A (\alpha B) }[/math]
  • [math]\displaystyle{ (\alpha+\beta)A = \alpha A+\beta A }[/math] וכן [math]\displaystyle{ \alpha(A+B)=\alpha A + \alpha B }[/math]



  • מטריצת היחידה [math]\displaystyle{ I_n\in\mathbb{F}^{n\times n} }[/math] מוגדרת על ידי [math]\displaystyle{ [I_n]_{ij}=\begin{cases}1 & i=j\\ 0 & i\neq j\end{cases} }[/math]
  • לכל [math]\displaystyle{ A\in\mathbb{F}^{n\times m} }[/math] מתקיים כי [math]\displaystyle{ I_n\cdot A=A\cdot I_m =A }[/math]



  • לכל שלוש מטריצות מתקיים חוק הקיבוץ (אסוציאטיביות)
    • [math]\displaystyle{ (AB)C=A(BC) }[/math]


פתרון כללי למערכת משוואות לא הומוגנית

  • פתרון פרטי למערכת הלא הומוגנית + פתרון כללי למערכת ההומוגנית = פתרון כללי למערכת הלא הומוגנית

שחלוף

  • עבור [math]\displaystyle{ A\in\mathbb{F}^{n\times m} }[/math] נגדיר את המטריצה המשוחלפת [math]\displaystyle{ A^t\in\mathbb{F}^{m\times n} }[/math] על ידי [math]\displaystyle{ [A^t]_{ij}=[A]_{ji} }[/math]


  • [math]\displaystyle{ R_i(A^t)=C_i^t(A) }[/math]
  • [math]\displaystyle{ C_i(A^t)=R_i^t(A) }[/math]


  • [math]\displaystyle{ (A^t)^t=A }[/math]
  • [math]\displaystyle{ (A+B)^t = A^t+B^t }[/math]
  • [math]\displaystyle{ (\alpha A)^t = \alpha A^t }[/math]
  • [math]\displaystyle{ (AB)^t=B^tA^t }[/math]


עקבה

  • העקבה (trace) של מטריצה ריבועית היא סכום איברי האלכסון:
    • עבור [math]\displaystyle{ A\in\mathbb{F}^{n\times n} }[/math] נגדיר [math]\displaystyle{ tr(A)=\sum_{i=1}^n[A]_{ii} }[/math]


  • תכונות העקבה:
    • [math]\displaystyle{ tr(A+B)=tr(A)+tr(B) }[/math]
    • [math]\displaystyle{ tr(\alpha A)=\alpha tr(A) }[/math]
    • [math]\displaystyle{ tr(AB)=tr(BA) }[/math]


  • דוגמא: לא קיימות מטריצות ממשייות [math]\displaystyle{ A,B\in\mathbb{R}^{n\times n} }[/math] כך ש [math]\displaystyle{ AB-BA=I }[/math]
    • [math]\displaystyle{ tr(AB-BA)=0 }[/math] אך [math]\displaystyle{ tr(I)=n\neq 0 }[/math]


תרגול

מטריצות הפיכות ומטריצות הופכיות

  • מטריצה [math]\displaystyle{ A\in\mathbb{F}^{n\times m} }[/math] נקראת הפיכה אם קיימות מטריצות [math]\displaystyle{ B,C\in\mathbb{F}^{m\times n} }[/math] כך ש[math]\displaystyle{ AB=I_n }[/math] וכן [math]\displaystyle{ CA=I_m }[/math]
  • אם מטריצה היא הפיכה, קיימת מטריצה יחידה שנסמנה [math]\displaystyle{ A^{-1} }[/math] ונקרא לה ההופכית של [math]\displaystyle{ A }[/math] המקיימת [math]\displaystyle{ AA^{-1}=I }[/math]. כמו כן היא המטריצה היחידה המקיימת [math]\displaystyle{ A^{-1}A=I }[/math].


  • תהי [math]\displaystyle{ A }[/math] הפיכה, אזי למערכת המשוואות [math]\displaystyle{ A\vec{x}=\vec{b} }[/math] יש פתרון יחיד, והוא [math]\displaystyle{ \vec{x}=A^{-1}\vec{b} }[/math]



  • תהיינה [math]\displaystyle{ A,B }[/math] הפיכות מעל אותו שדה כך שהכפל [math]\displaystyle{ AB }[/math] מוגדר, אזי [math]\displaystyle{ (AB)^{-1}=B^{-1}A^{-1} }[/math]
  • תהי [math]\displaystyle{ A }[/math] הפיכה אזי [math]\displaystyle{ (A^t)^{-1}=(A^{-1})^t }[/math]
  • תהי [math]\displaystyle{ A }[/math] הפיכה אזי [math]\displaystyle{ (A^{-1})^{-1}=A }[/math]
  • תהי [math]\displaystyle{ A }[/math] הפיכה ויהי סקלר [math]\displaystyle{ \alpha\neq 0 }[/math] אזי [math]\displaystyle{ (\alpha A)^{-1}=\alpha^{-1}A^{-1} }[/math]



מטריצות פעולה

  • תהי [math]\displaystyle{ f }[/math] פונקצית פעולה המבצעת פעולת דירוג אלמנטרית מסוימת.
  • לכל [math]\displaystyle{ n }[/math] נגדיר את מטריצת הפעולה [math]\displaystyle{ f(I_n) }[/math].
  • לכל מטריצה [math]\displaystyle{ A\in\mathbb{F}^{m\times n} }[/math] מתקיים כי [math]\displaystyle{ f(I_m)\cdot A = f(A) }[/math]
  • מטריצת הפעולה היא הפיכה.


  • לכל מטריצה [math]\displaystyle{ A\in\mathbb{F}^{m\times n} }[/math] קיימת מטריצה הפיכה [math]\displaystyle{ P\in\mathbb{F}^{m\times m} }[/math] כך ש [math]\displaystyle{ P\cdot A=CF(A) }[/math]


בדיקת הופכיות ומציאת ההופכית

  • מטריצה מחלקת אפס אינה הפיכה. כלומר, אם [math]\displaystyle{ B\neq 0 }[/math] אך [math]\displaystyle{ AB=0 }[/math] או [math]\displaystyle{ BA=0 }[/math] אזי [math]\displaystyle{ A }[/math] אינה הפיכה
  • אם ב[math]\displaystyle{ A }[/math] השורה הi היא שורת אפסים, אזי לכל [math]\displaystyle{ B }[/math] כך שהכפל מוגדר, השורה הi ב[math]\displaystyle{ AB }[/math] היא שורת אפסים.
    • ב[math]\displaystyle{ BA }[/math] לא חייבת להיות שורת אפסים, לעומת זאת.
  • מטריצה עם שורת אפסים אינה הפיכה.
  • מטריצה הפיכה חייבת להיות ריבועית.



  • מטריצה [math]\displaystyle{ A }[/math] היא הפיכה אם ורק אם [math]\displaystyle{ CF(A)=I }[/math]
  • אם [math]\displaystyle{ A,B }[/math] ריבועיות כך ש[math]\displaystyle{ AB=I }[/math] אזי [math]\displaystyle{ A^{-1}=B }[/math]
  • תהיינה [math]\displaystyle{ A,B\in\mathbb{F}^{n\times n} }[/math] ריבועיות אזי [math]\displaystyle{ AB }[/math] הפיכה אם ורק אם [math]\displaystyle{ A,B }[/math] הפיכות שתיהן
  • דוגמא לשתי מטריצות לא הפיכות שמכפלתן הפיכה (זה לא סותר את המשפטים לעיל כיוון שהמטריצות אינן ריבועיות).
    • [math]\displaystyle{ \begin{pmatrix}1&0&0\\0&1&0\end{pmatrix}\begin{pmatrix}1&0\\0&1\\0&0\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix} }[/math]



אלגוריתם לבדיקת הפיכות ומציאת ההופכית
  • תהי מטריצה ריבועית [math]\displaystyle{ A\in\mathbb{F}^{n\times n} }[/math]
  • נדרג את מטריצת הבלוקים [math]\displaystyle{ (A|I) }[/math] קנונית.
  • אם בשלב כלשהו נגלה שבצורה המדורגת של [math]\displaystyle{ A }[/math] יש שורת אפסים, אזי היא אינה הפיכה.
  • אחרת, הצורה הקנונית של [math]\displaystyle{ A }[/math] היא [math]\displaystyle{ I }[/math] ולכן היא הפיכה.
  • הגענו למטריצת הבלוקים [math]\displaystyle{ (I|A^{-1}) }[/math].


תרגול

תרגול בנושא מטריצות הפיכות ומטריצות פעולה

פרק 4 - מרחבים וקטוריים

הגדרה ותכונות של מרחבים וקטוריים

  • מרחב וקטורי [math]\displaystyle{ V }[/math] מעל שדה [math]\displaystyle{ \mathbb{F} }[/math] הוא קבוצת איברים (הנקראים וקטורים) יחד עם פעולת חיבור וכפל בסקלר, כך שמתקיימות התכונות הבאות:
  1. סגירות: [math]\displaystyle{ \forall u,w\in V\forall \alpha\in\mathbb{F}:u+w\in V \and \alpha u\in V }[/math]
  2. חילופיות: [math]\displaystyle{ \forall u,w\in V\forall \alpha\in\mathbb{F}:u+w=w+u }[/math]
  3. אסוציאטיביות (קיבוץ): [math]\displaystyle{ \forall u,w,v\in V\forall \alpha,\beta\in\mathbb{F}:(u+w)+v=u+(w+v) \and \alpha(\beta v) = (\alpha \beta) v }[/math]
  4. נייטרלי לחיבור: [math]\displaystyle{ \exists 0_V\in V\forall v\in V:0_V+v=v }[/math]
  5. נגדיים: [math]\displaystyle{ \forall v\in V\exists (-v)\in V: v+(-v)=0_V }[/math]
  6. נייטרלי לכפל בסקלר: [math]\displaystyle{ \forall v\in V: 1_\mathbb{F}\cdot v = v }[/math]
  7. דיסטריביוטיביות (פילוג): [math]\displaystyle{ \forall u,w\in V\forall \alpha\in\mathbb{F}: (\alpha+\beta)u = \alpha u+\beta u \and \alpha(u+w)=\alpha u +\alpha w }[/math]



  • יהי [math]\displaystyle{ V }[/math] מ"ו מעל שדה [math]\displaystyle{ \mathbb{F} }[/math] ויהיו [math]\displaystyle{ \alpha\in\mathbb{F},u\in V }[/math] אזי:
    • [math]\displaystyle{ \alpha u = 0_V }[/math] אם ורק אם [math]\displaystyle{ \alpha=0_\mathbb{F} }[/math] או [math]\displaystyle{ u=0_V }[/math]
  • כמו כן, [math]\displaystyle{ (-1_\mathbb{F})u=-u }[/math]



תתי מרחבים

  • יהי [math]\displaystyle{ V }[/math] מ"ו מעל שדה [math]\displaystyle{ \mathbb{F} }[/math], ותהי [math]\displaystyle{ U\subseteq V }[/math] תת קבוצה של וקטורים.
  • אזי [math]\displaystyle{ U }[/math] נקרא תת מרחב של [math]\displaystyle{ V }[/math] אם הוא מהווה מרחב וקטורי יחד עם פעולת החיבור והכפל בסקלר של [math]\displaystyle{ V }[/math].


  • יהי [math]\displaystyle{ V }[/math] מ"ו מעל שדה [math]\displaystyle{ \mathbb{F} }[/math], ותהי [math]\displaystyle{ U\subseteq V }[/math] תת קבוצה של וקטורים.
  • אזי [math]\displaystyle{ U }[/math] תת מרחב אם ורק אם מתקיימים שני התנאים הבאים:
    • [math]\displaystyle{ 0_V\in U }[/math]
    • לכל [math]\displaystyle{ v_1,v_2\in U }[/math] ולכל [math]\displaystyle{ \alpha\in\mathbb{F} }[/math] מתקיים כי [math]\displaystyle{ v_1+\alpha v_2\in U }[/math]



  • תהי [math]\displaystyle{ A\in\mathbb{F}^{m\times n} }[/math] אזי קבוצת הפתרונות של המערכת ההומוגנית [math]\displaystyle{ N(A)\subseteq\mathbb{F}^n }[/math] הינה תת מרחב וקטורי.
    • קבוצת הפתרונות של מערכת לא הומוגנית אינה תת מרחב וקטורי כיוון שהיא אינה מכילה את וקטור האפס.


  • אוסף המטריצות הסימטריות מהווה תת מרחב של אוסף המטריצות הריבועיות.


  • אוסף הפולינומים שמתאפסים בנקודה מסויימת, מהווה תת מרחב של אוסף הפולינומים.



חיתוך, סכום, וסכום ישר של תתי מרחבים

  • יהי [math]\displaystyle{ V }[/math] מ"ו מעל שדה [math]\displaystyle{ \mathbb{F} }[/math], ויהיו [math]\displaystyle{ U,W\subseteq V }[/math], תתי מרחב.
    • [math]\displaystyle{ U\cap W }[/math] הינו תת מרחב של [math]\displaystyle{ V }[/math].
    • [math]\displaystyle{ U\cup W }[/math] תת מרחב של [math]\displaystyle{ V }[/math] אם ורק אם [math]\displaystyle{ U\subseteq W }[/math] או [math]\displaystyle{ W\subseteq U }[/math].



  • יהי [math]\displaystyle{ V }[/math] מ"ו מעל שדה [math]\displaystyle{ \mathbb{F} }[/math], ויהיו [math]\displaystyle{ U,W\subseteq V }[/math], תתי מרחב.
  • נגדיר את סכום תתי המרחבים:
    • [math]\displaystyle{ U+W=\{u+w|u\in U,w\in W\} }[/math]


  • [math]\displaystyle{ U+W }[/math] הינו תת המרחב הקטן ביותר שמכיל את [math]\displaystyle{ U,W }[/math]. כלומר סכום תתי מרחבים הוא תת מרחב וגם:
    • לכל תת מרחב [math]\displaystyle{ U,W\subseteq T }[/math] מתקיים כי [math]\displaystyle{ U,W\subseteq U+W\subseteq T }[/math]


  • [math]\displaystyle{ U\cap W }[/math] הינו תת המרחב הגדול ביותר שמוכל ב[math]\displaystyle{ U,W }[/math]. כלומר חיתוך תתי מרחבים הוא תת מרחב וגם:
    • לכל תת מרחב [math]\displaystyle{ T\subseteq U,W }[/math] מתקיים כי [math]\displaystyle{ T\subseteq U\cap W\subseteq U,W }[/math]



  • דוגמא:
  • [math]\displaystyle{ V=\mathbb{R}^3 }[/math]
  • [math]\displaystyle{ U=\{(a,b,a+b)|a,b\in\mathbb{R}\} }[/math]
  • [math]\displaystyle{ W=\{(a+b,a,b)|a,b\in\mathbb{R}\} }[/math]
  • [math]\displaystyle{ U+W=V }[/math]
  • ניתן להציג וקטור בשתי דרכים שונות כסכום של רכיב מU ועוד רכיב מW:
    • [math]\displaystyle{ (4,4,4)=(0,2,2)+(4,2,2)=(1,2,3)+(3,2,1) }[/math]


  • סכום ישר:
  • יהי V מ"ו ויהיו U,W תתי מרחב. אומרים ש [math]\displaystyle{ V=U\oplus W }[/math] אם מתקיימים שני התנאים הבאים:
    • [math]\displaystyle{ V=U+W }[/math]
    • [math]\displaystyle{ U\cap W =\{0_V\} }[/math]


  • משפט:
  • [math]\displaystyle{ V=U\oplus W }[/math] אם ורק אם לכל וקטור [math]\displaystyle{ v\in V }[/math] קיימת הצגה יחידה [math]\displaystyle{ v=u+w }[/math] כסכום של רכיבים מU ומW.


  • כלומר בדוגמא לעיל, הסכום אינו ישר, כיוון שהצגנו וקטור אחד בשתי דרכים שונות.


תרגול

פרישה ותלות לינארית

  • יהי [math]\displaystyle{ V }[/math] מ"ו מעל שדה [math]\displaystyle{ \mathbb{F} }[/math] ותהי [math]\displaystyle{ S\subseteq V }[/math].
    • וקטור [math]\displaystyle{ x\in V }[/math] נקרא צירוף לינארי של הקבוצה [math]\displaystyle{ S }[/math] אם [math]\displaystyle{ x=0_V }[/math] או קיימים וקטורים בקבוצה [math]\displaystyle{ v_1,...,v_n\in S }[/math] וסקלרים מהשדה [math]\displaystyle{ a_1,...,a_n\in\mathbb{F} }[/math] כך ש [math]\displaystyle{ x=a_1v_1+...+a_nv_n }[/math]
  • כלומר, ניתן "ליצור" את x בעזרת פעולות המרחב הוקטורי על הקבוצה S (או שx=0)
  • אוסף כל הוקטורים במרחב שהם צירופים לינאריים של S נקרא [math]\displaystyle{ span(S) }[/math].


  • טענה: יהי V מ"ו ותהי [math]\displaystyle{ S\subseteq V }[/math] אזי [math]\displaystyle{ span(S) }[/math] הוא תת המרחב הקטן ביותר שמכיל את [math]\displaystyle{ S }[/math]. כלומר:
    • [math]\displaystyle{ span(S) }[/math] תת מרחב וקטורי
    • לכל תת מרחב [math]\displaystyle{ T }[/math] כך ש [math]\displaystyle{ S\subseteq T }[/math] מתקיים כי [math]\displaystyle{ S\subseteq span(S)\subeteq T }[/math]




בסיס ומימד

משפט השלישי חינם

תרגול

משפט המימדים

תרגול

הצגה פרמטרית ואלגברית

שלושת מרחבי המטריצה ודרגת מטריצה

תרגול

פרק 5 - העתקות לינאריות

העתקות, הרכבת העתקות, הפיכות העתקות

  • מרחב ההעתקות

גרעין ותמונה

משפט הדרגה

תרגול

מטריצה מייצגת העתקה

יחידות הצגה לפי בסיס, קואורדינטות

משפט קיום ויחידות

מטריצת סכום והרכבה

מטריצות מעבר בין בסיסים

תרגול

פרק 6 - דטרמיננטות

תמורות

הגדרת הדטרמיננטה

קשר בין דטרמיננטה להפיכות

כפליות הדטרמיננטה

כלל קרמר

מטריצה נלווית

תרגול