שיחה:88-211 תשעג סמסטר א/תרגילים: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 49: שורה 49:
אני מניח שמדובר על פעולת החיבור, לפחות בנוגע לסעיפים א,ב, אחרת היה מצויין כי מדובר בחבורה הכפלית,
אני מניח שמדובר על פעולת החיבור, לפחות בנוגע לסעיפים א,ב, אחרת היה מצויין כי מדובר בחבורה הכפלית,
אבל מה בנוגע לסעיף ג'? יכול להיות שאני פשוט מפספס משהו מבחינת הבנה?
אבל מה בנוגע לסעיף ג'? יכול להיות שאני פשוט מפספס משהו מבחינת הבנה?
::<math>\mathbb {Z}_n </math> ביחס לכפל אינו חבורה אף פעם. אפילו אם <math>n</math> ראשוני שכן אין הופכי לאפס ביחס לכפל. לכן,  יש טעם לדבר רק על החבורה החיבורית. הפעולה של שתי החבורות בשני הסעיפים א וב היא חיבור רכיב רכיב לפי מודולו n המתאים בכל רכיב.
לגבי סעיף ג' חבורת אוילר מוגדרת '''תמיד''' כחבורת ההפיכים של המונואיד <math>\mathbb {Z}_n </math>  ביחס לכפל.--[[משתמש:מני ש.|מני]] 16:34, 8 בנובמבר 2012 (IST)

גרסה מ־14:34, 8 בנובמבר 2012

זה המקום לכל השאלות בנושא הקורס. הודעות תוכלו למצוא בדף הראשי של הקורס.

הנחיות

  1. כשאתם מתייחסים לתרגיל, אנא צטטו.
  2. אנא המנעו מלפתוח כותרות חדשות שלא לצורך.
  3. חותמים בסוף כל הודעה באמצעות "~~~~. פתיחת חשבון - חינם.

תרגיל 1, שאלה 2, סעיף ה

בשאלה 2 ה יש צורך להוכיח אסוציאטיביות הפרש סימטרי? זה ארוך, מייגע ובאופן כללי לא נושא התרגיל.

כמובן שאין צורך להוכיח כי ההפרש הסימטרי הינו אסוציאטיבי. כבר הוכחתם את הטענה הזאת בבדידה... --לואי 18:42, 31 באוקטובר 2012 (IST)

שאלה

תרגיל שנתקלתי בו בחוברת של המרצה: תרגיל 1.1.8 אם 'f:X→X איזומורפיזם, אז f−1 (הפכי) גם הוא איזומורפיזם.

יש כאן שאלה? או סתם הגיגים?... =)--לואי 11:40, 29 באוקטובר 2012 (IST)

תרגיל 1, שאלה מס' 3

האם בתת הסעיף הראשון של א (וגם של סעיף ב' למעשה..) יש משמעות להאם זה מודולו 7 או לא? כי אחרת גם בא' וגם ב-ב' זאת בדיוק אותה תשובה, לא?!

כן... זה אותו הרעיון... --לואי 18:43, 31 באוקטובר 2012 (IST)

תרגיל 1 שאלה 5 סעיף ב'

בחבורה למחצה [math]\displaystyle{ S }[/math] יש 7 יחידות משמאל.

רק כדי לוודא, הכוונה היא ל-7 יחידות שונות זו מזו משמאל?

כן, יש 7 יחידות שונות משמאל. --לואי 21:03, 1 בנובמבר 2012 (IST)

תרגיל 1, שאלה 3

האם מותר להסתמך על האסוציטיבות במרוכבים, במקום לבדוק מחדש? אותו דבר לגבי ארבע, תודה.

  • קודם כל - יפה ששמת לב לקשר עם המרוכבים! =)
  • שנית, אני אענה באופן כללי: ניתן להסתמך של האסוציאטיביות של פעולות ידועות. למשל: הפעולות הבאות הן אסוציאטיביות ואין צורך להוכיח זאת מחדש: הפרש סימטרי, כפל מטריצות, כפל וחיבור ממשי/מרוכב, כפל וחיבור [math]\displaystyle{ \mod n }[/math] וכדומה. --לואי 21:09, 1 בנובמבר 2012 (IST)

תרגול כיתה (רגילים)- סתם הערה

בדוגמא הנגדית בשאלה האחרונה אפשר פשוט להגיד שהמטריצה ab שקיבלנו היא בעצם צורת ז'ורדן (עם ע"ע 1) ולכן לא ניתנת ללכסון ושונה מ I לכל n, נכון?! (במקום לתת לנו להוכיח את זה באינדוקציה =) )

לא בטוח שהבנתי את הטיעון. אני מסכים לכל המשפט :"שהמטריצה ab שקיבלנו היא בעצם צורת ז'ורדן (עם ע"ע 1) ולכן לא ניתנת ללכסון"

אבל לא ברור לי איך ממנו מסיקים(זאת אומרת בדרך השונה מאינדוקציה) שהמטריצה בחזקת n אינה I לכל n, על מה בדיוק הסתמכת? --מני 12:03, 8 בנובמבר 2012 (IST)

תרגיל 2, שאלה 4

עבור כל אחד מהסעיפים א-ג, האם יש צורך לדעת באיזה פעולת כפל מדובר? (כלומר, חבורה ביחס לאיזה פעולה?) אני מניח שמדובר על פעולת החיבור, לפחות בנוגע לסעיפים א,ב, אחרת היה מצויין כי מדובר בחבורה הכפלית, אבל מה בנוגע לסעיף ג'? יכול להיות שאני פשוט מפספס משהו מבחינת הבנה?

[math]\displaystyle{ \mathbb {Z}_n }[/math] ביחס לכפל אינו חבורה אף פעם. אפילו אם [math]\displaystyle{ n }[/math] ראשוני שכן אין הופכי לאפס ביחס לכפל. לכן, יש טעם לדבר רק על החבורה החיבורית. הפעולה של שתי החבורות בשני הסעיפים א וב היא חיבור רכיב רכיב לפי מודולו n המתאים בכל רכיב.

לגבי סעיף ג' חבורת אוילר מוגדרת תמיד כחבורת ההפיכים של המונואיד [math]\displaystyle{ \mathbb {Z}_n }[/math] ביחס לכפל.--מני 16:34, 8 בנובמבר 2012 (IST)