שיטות אינטגרציה: הבדלים בין גרסאות בדף
Ofekgillon10 (שיחה | תרומות) |
Ofekgillon10 (שיחה | תרומות) |
||
שורה 138: | שורה 138: | ||
=== מצב ראשון <math>deg\ p=deg\ q-1</math> === | === מצב ראשון <math>deg\ p=deg\ q-1</math> === | ||
במצב כזה, <math>deg\ q'=deg\ p</math>, לכן קיים קבוע <math>c</math> שעבורו <math>h=cp-q'</math> יהיה ממעלה יותר נמוכה, כלומר <math>deg\ h<\deg\ q-1</math>. נקבל: | במצב כזה, <math>deg\ q'=deg\ p</math>, לכן קיים קבוע <math>c</math> שעבורו <math>h=cp-q'</math> יהיה ממעלה יותר נמוכה, כלומר <math>deg\ h<\ deg\ q-1</math>. נקבל: | ||
<math>\int f=\int\frac{p}{q}=\int\frac{\ \frac{h+q'}{c}\ }{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{1}{c}\cdot ln|q|</math>. עוברים למצב הבא. | <math>\int f=\int\frac{p}{q}=\int\frac{\ \frac{h+q'}{c}\ }{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{1}{c}\cdot ln|q|</math>. עוברים למצב הבא. |
גרסה מ־10:50, 19 במאי 2013
בדף זה יוצגו מספר שיטות אינטגרציה הניתנות לשימוש. בסיום הדף מצורף קובץ המסכם את מה שנכתב כאן.
אינטגרציה "רגילה"
הכוונה היא לבצע את האינטגרל לפי חוקי הגזירה. לדוגמה,
[math]\displaystyle{ \int \left(e^x+\frac{1}{x} \right )dx=e^x+ln\left | x \right |+c }[/math].
דף אינטגרלים
השלמה לריבוע
כאשר נקבל פונקציה רציונאלית שבמונה שלה יש מספר ובמכנה שלה פולינום ממעלה שנייה, ניתן להשלים את הפולינום לריבוע ולהיעזר ב-[math]\displaystyle{ arctan }[/math].
דוגמה
[math]\displaystyle{ \int\frac{1}{x^2+x+1\frac{1}{4}}dx }[/math]
ניעזר בהשלמה לריבוע של המכנה. נקבל:
[math]\displaystyle{ \int\frac{1}{x^2+x+1\frac{1}{4}}dx=\int\frac{1}{\left (x+\frac{1}{2} \right )^2+1}dx=arctan\left (x+\frac{1}{2} \right )+c }[/math]
אינטגרציה בחלקים
לפי נוסחת הגזירה של מכפלת פונקציות (נוסחת לייבניץ), אנו מקבלים:
[math]\displaystyle{ \int{f'g}=fg-\int{fg'} }[/math] (ניתן לוודא על ידי גזירה).
דוגמה
נחפש את [math]\displaystyle{ \int ln\ x \ dx }[/math].
לפי השיטה, נסמן [math]\displaystyle{ f'\left (x \right )=1 }[/math], [math]\displaystyle{ g(x)=ln\ x }[/math].
לכן נקבל [math]\displaystyle{ f(x)=x }[/math], [math]\displaystyle{ g'(x)=\frac{1}{x} }[/math].
לפי נוסחת אינטגרציה בחלקים, נקבל:
[math]\displaystyle{ \int ln\ x \ dx=x\cdot ln\ x-\int x\cdot \frac{1}{x}\ dx=x\cdot ln\ x-\int 1\ dx=x\cdot ln\ x-x+c }[/math].
הרחבה
אינטגרציה בהצבה
לפי כלל השרשרת, אנו מקבלים:
[math]\displaystyle{ \int f\left (g\left(x \right ) \right )\cdot g'\left (x \right )\ dx=F\left (g\left(x \right ) \right )+c }[/math] (ניתן לוודא על ידי גזירה).
דוגמה
נחפש את [math]\displaystyle{ \int \frac{sin\left(2x \right )}{a+sin^2 x}dx }[/math] כאשר [math]\displaystyle{ a\gt 0 }[/math].
נבצע הצבה: [math]\displaystyle{ du=2\cdot sin\ x\cdot cos\ x\ dx=sin\left(2x \right )dx \ \Leftarrow u=sin^2 x }[/math]. מקבלים:
[math]\displaystyle{ \int \frac{sin\left(2x \right )}{a+sin^2 x}dx=\int \frac{1}{a+u}du=ln\left ( a+u \right )+c=ln(a+sin^2 x)+c }[/math] (נזכור כי [math]\displaystyle{ a+u\gt 0 }[/math], לכן אין צורך בערך מוחלט).
הרחבה
ההצבה הטריגונומטרית האוניברסלית
בהינתן פונקציה אשר משולבות בה פונקציות טריגונומטריות (ועדיף שהיא תהיה מנה של חיבור וכפל שלהן), אזי נציב [math]\displaystyle{ u=tan\left (\frac{x}{2}\right ) }[/math].
נזכור כי [math]\displaystyle{ 1+tan^2\alpha=\frac{1}{cos^2 \alpha} }[/math], ונקבל [math]\displaystyle{ cos^2 \left ( \frac{x}{2} \right )=\frac{1}{1+tan^2\left ( \frac{x}{2} \right )}=\frac{1}{1+u^2} }[/math].
נקבל בנוסף [math]\displaystyle{ cos\ x=2\cdot cos^2\left ( \frac{x}{2} \right )-1=2\cdot\frac{1}{1+u^2}-1=\frac{2-1-u^2}{1+u^2}=\frac{1-u^2}{1+u^2} }[/math].
לכן [math]\displaystyle{ sin\ x=\sqrt{ 1-cos^2 x }=\sqrt{1-\left (\frac{1-u^2}{1+u^2} \right )^2}=\sqrt{1-\frac{1-2u^2+u^4}{1+2u^2+u^4}}=\sqrt{\frac{1+2u^2+u^4-\left (1-2u^2+u^4 \right )}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{4u^2}{\left ( 1+u^2 \right )^2}}=\sqrt{\frac{\left ( 2u \right )^2}{\left ( 1+u^2 \right )^2}}=\frac{2u}{1+u^2} }[/math]
כמו כן, [math]\displaystyle{ x=2\cdot arctan\ t }[/math], ולכן [math]\displaystyle{ dx=\frac{2}{1+u^2} du }[/math].
דוגמה
[math]\displaystyle{ \int\frac{1}{2+2\cdot sin\ x}dx }[/math]
ניעזר בהצבה הטריגונומטרית האוניברסלית. נציב [math]\displaystyle{ u=tan\left (\frac{x}{2}\right ) }[/math]. נקבל:
[math]\displaystyle{ \int\frac{1}{2+2\cdot sin\ x}dx=\int\frac{1}{2+2\cdot \frac{2u}{1+u^2}}\cdot \frac{2}{1+u^2}du=\int\frac{1+u^2}{2+2u^2+4u}\cdot\frac{2}{1+u^2}du=\int\frac{1}{u^2+2u+1}du=\int\frac{1}{\left (u+1\right )^2}du=-\frac{1}{u+1}+c=-\frac{1}{1+tan\left (\frac{x}{2}\right )}+c }[/math]
הרחבה
פירוק לשברים חלקיים
כאשר נקבל פונקציה רציונאלית שבמונה שלה פולינום ממעלה נמוכה מאשר במכנה שלה, נרצה לפרק את השבר לשברים חלקיים אשר סכומם הוא השבר המקורי, וקל לבצע אינטגרל לכל אחד מהם בנפרד. ננסה לפרק אותו לגורמים לינאריים ולגורמים ממעלה שנייה.
הצבות אוילר
הצבות אוילר מתייחסות למקרה של פונקציה "רציונאלית" אשר הרכיבים בה הם [math]\displaystyle{ x }[/math] ו-[math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math].
אוילר 1 - הפולינום פריק
נניח כי הפולינום [math]\displaystyle{ ax^2+bx+c }[/math] פריק (מעל הממשיים, כמובן). נסמן [math]\displaystyle{ ax^2+bx+c=a\left (x-\alpha\right )\left (x-\beta\right ) }[/math].
הצבת אוילר: נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=u\cdot\left (x-\alpha\right ) }[/math] (אפשר גם את השורש השני). נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math], ונוכל למצוא גם את [math]\displaystyle{ x }[/math] וגם את [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math].
דוגמה
[math]\displaystyle{ \int\frac{1}{x\sqrt{x^2-7x+6}}dx }[/math]
ניעזר בהצבת אוילר: נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=u\cdot\left (x-1\right ) }[/math]. לכן [math]\displaystyle{ \left(x-1 \right )\left(x-6 \right )=u^2\left(x-1 \right )^2 }[/math], כלומר [math]\displaystyle{ x-6=u^2\left(x-1 \right ) }[/math], ומכאן [math]\displaystyle{ x=\frac{u^2-6}{u^2-1} }[/math]. לכן [math]\displaystyle{ dx=\frac{2u\left (u^2-1 \right )-2u\left (u^2-6 \right )}{\left (u^2-1 \right )^2}du=\frac{10u}{\left (1-u^2 \right )^2}du }[/math]. בנוסף, [math]\displaystyle{ \sqrt{x^2-7x+6}=u\cdot\left ( x-1 \right )=u\cdot\left ( \frac{u^2-6}{u^2-1}-1 \right )=-\frac{5u}{u^2-1} }[/math]
מקבלים:
[math]\displaystyle{ \int\frac{1}{x\sqrt{x^2-7x+6}}dx=-\int\frac{1}{\ \frac{u^2-6}{u^2-1}\cdot \frac{5u}{u^2-1}\ }\cdot\frac{10u}{\left ( 1-u^2 \right )^2}du=-2\int \frac{1}{u^2-6}du }[/math] כאשר האינטגרל האחרון ניתן לפתרון באמצעות פירוק לשברים חלקיים.
אוילר 2 - פולינום יותר כללי
ישנן שתי אפשרויות:
- בהינתן [math]\displaystyle{ a\gt 0 }[/math], נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=\sqrt{a}\cdot x+u }[/math].
- בהינתן [math]\displaystyle{ c\gt 0 }[/math], נציב [math]\displaystyle{ \sqrt{ax^2+bx+c}=xu+\sqrt{c} }[/math].
נביע את [math]\displaystyle{ x }[/math] באמצעות [math]\displaystyle{ u }[/math], ונוכל למצוא את [math]\displaystyle{ dx }[/math] ואת [math]\displaystyle{ \sqrt{ax^2+bx+c} }[/math].
דוגמה
[math]\displaystyle{ \int\frac{1}{\sqrt{x^2-7x+6}}dx }[/math]
ניעזר בהצבת אוילר (האופציה הראשונה): נציב [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u }[/math]. נעלה בריבוע ונקבל [math]\displaystyle{ x^2-7x+6=x^2+2xu+u^2 }[/math], כלומר [math]\displaystyle{ x=\frac{6-u^2}{2u+7} }[/math]. לכן [math]\displaystyle{ dx=\frac{-2u\left (2u+7 \right )-2\left (6-u^2 \right )}{\left (2u+7 \right )^2}du=-2\cdot\frac{u^2+7u+6}{\left ( 2u+7 \right )^2}du }[/math], וכן [math]\displaystyle{ \sqrt{x^2-7x+6}=x+u=\frac{6-u^2}{2u+7}+u=\frac{6-u^2+2u^2+7u}{2u+7}=\frac{u^2+7u+6}{2u+7} }[/math].
מקבלים:
[math]\displaystyle{ \int\frac{1}{\sqrt{x^2-7x+6}}dx=-\int\frac{1}{\ \frac{u^2+7u+6}{2u+7} \ }\cdot 2\cdot\frac{u^2+7u+6}{\left ( 2u+7 \right )^2}du=-\int\frac {2}{2u+7}du=-ln\left | 2u+7 \right |+c=-ln\left | \sqrt{x^2-7x+6}-x \right |+c }[/math]
הרחבה
פונקציה רציונאלית
קיימים מספר מצבים עבור פונקציות רציונאליות [math]\displaystyle{ f\left (x\right )=\frac{p(x)}{q(x)} }[/math] (כאשר [math]\displaystyle{ p(x),q(x) }[/math] פולינומים). להלן חמישה:
מצב ראשון [math]\displaystyle{ deg\ p=deg\ q-1 }[/math]
במצב כזה, [math]\displaystyle{ deg\ q'=deg\ p }[/math], לכן קיים קבוע [math]\displaystyle{ c }[/math] שעבורו [math]\displaystyle{ h=cp-q' }[/math] יהיה ממעלה יותר נמוכה, כלומר [math]\displaystyle{ deg\ h\lt \ deg\ q-1 }[/math]. נקבל:
[math]\displaystyle{ \int f=\int\frac{p}{q}=\int\frac{\ \frac{h+q'}{c}\ }{q}=\frac{1}{c}\cdot\int\frac{h}{q}+\frac{1}{c}\cdot ln|q| }[/math]. עוברים למצב הבא.
מצב שני [math]\displaystyle{ deg\ p\lt deg\ q-1 }[/math]
מפרקים לשברים חלקיים כפי שמוסבר בקובץ הזה.
מצב שלישי [math]\displaystyle{ deg\ p\ge deg\ q }[/math]
מבצעים חילוק פולינומים וחוזרים למצבים הקודמים.