קוד:חסמים: הבדלים בין גרסאות בדף
Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "הגדרה: תהי U סדורה ותהי תת קבוצה $A\subseteq U$, אזי: $M\in U$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$ $m\in...") |
Ofekgillon10 (שיחה | תרומות) אין תקציר עריכה |
||
שורה 1: | שורה 1: | ||
<latex2pdf> | |||
<tex>קוד:ראש</tex> | |||
$M | \begin{definition} | ||
תהי קבוצה $A\subseteq \mathbb{R}$, אזי: | |||
\begin{enumerate} | |||
\item $M$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$ (כלומר שגדול/שווה מכל איברי הקבוצה) | |||
$m | \item $m$ נקרא חסם מלרע של A אם $\forall a\in A:a\geq m$ | ||
חסם מלעיל של A נקרא מקסימום אם הוא שייך לקבוצה A | \item חסם מלעיל של A נקרא מקסימום אם הוא שייך לקבוצה A (בעצם המקסימום זה איבר בקבוצה שגדול או שווה לכל איברי הקבוצה) | ||
חסם מלרע של A נקרא מינימום אם הוא שייך לקבוצה A | \item חסם מלרע של A נקרא מינימום אם הוא שייך לקבוצה A | ||
חסם מלעיל של A נקרא החסם העליון של A אם אין ל-A חסם מלעיל קטן ממש ממנו | \item חסם מלעיל של A נקרא החסם העליון של A אם אין ל-A חסם מלעיל קטן ממש ממנו, מסמנים אותו $\sup A $ (מהמילה ) | ||
חסם מלרע של A נקרא החסם התחתון של A אם אין ל-A חסם מלרע גדול ממש ממנו | \item חסם מלרע של A נקרא החסם התחתון של A אם אין ל-A חסם מלרע גדול ממש ממנו, מסמנים אותו $\inf A $ (מהמילה inferior) | ||
\end{enumerate} | |||
\end{definition} | |||
שימו לב לשלילות הבאות: | שימו לב לשלילות הבאות: | ||
שורה 24: | שורה 31: | ||
m אינו חסם תחתון אם"ם הוא אינו חסם מלרע או שקיים חסם מלרע הגדול ממש ממנו. | m אינו חסם תחתון אם"ם הוא אינו חסם מלרע או שקיים חסם מלרע הגדול ממש ממנו. | ||
\begin{remark} | |||
מאחת ההגדרות של $\mathbb{R} $ מקבלים שלכל $A\subseteq\mathbb{R}$ חסומה מלעיל (מלרע) קיים חסם עליון (תחתון). | |||
\end{remark} | |||
\begin{thm} | |||
תהי $A\subseteq\mathbb{R}$ חסומה מלעיל אזי: | |||
M חסם עליון של A אם"ם M חסם מלעיל של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a>M-\epsilon$ | M חסם עליון של A אם"ם M חסם מלעיל של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a>M-\epsilon$ | ||
שורה 35: | שורה 42: | ||
m חסם תחתון של A אם"ם m חסם מלרע של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a<m+\epsilon$ | m חסם תחתון של A אם"ם m חסם מלרע של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a<m+\epsilon$ | ||
\end{thm} | |||
במילים: M חסם עליון אם הוא חסם מלעיל וגם אין חסם מלעיל הקטן ממנו. כלומר, כל מספר הקטן ממנו אינו חסם מלעיל. כלומר, אם נקטין את M בגודל כלשהו שאינו אפס נקבל מספר שאינו חסם מלעיל. מספר אינו חסם מלעיל אם"ם יש איבר בקבוצה הגדול ממנו. (ניסוח דומה עבור החסם התחתון.) | במילים: M חסם עליון אם הוא חסם מלעיל וגם אין חסם מלעיל הקטן ממנו. כלומר, כל מספר הקטן ממנו אינו חסם מלעיל. כלומר, אם נקטין את M בגודל כלשהו שאינו אפס נקבל מספר שאינו חסם מלעיל. מספר אינו חסם מלעיל אם"ם יש איבר בקבוצה הגדול ממנו. (ניסוח דומה עבור החסם התחתון.) | ||
\begin{proof} | |||
נניח M חסם עליון. מתוך ההגדרה של חסם עליון נובע בפרט ש-M חסם מלעיל. נותר להוכיח כי | |||
$$\forall\epsilon >0\exists a\in A:a>M-\epsilon$$ | |||
נניח בשלילה כי קיים $\epsilon >0$ כל שלכל האיברים $a\in A$ מתקיים $a\leq M-\epsilon$.\\ | |||
לכן, לפי ההגדרה, $M-\epsilon$ הוא חסם מלעיל של הקבוצה. מכיוון שאפסילון גדול מאפס, $M-\epsilon$ הוא חסם מלעיל קטן ממש מהחסם העליון $M$, בסתירה לכך שהוא חסם המלעיל הקטן ביותר. | |||
\end{thm} | |||
<tex>קוד:זנב</tex> | |||
</latex2pdf> |
גרסה מ־09:27, 17 בספטמבר 2014
<latex2pdf> <tex>קוד:ראש</tex>
\begin{definition} תהי קבוצה $A\subseteq \mathbb{R}$, אזי: \begin{enumerate} \item $M$ נקרא חסם מלעיל של A אם $\forall a\in A:a\leq M$ (כלומר שגדול/שווה מכל איברי הקבוצה)
\item $m$ נקרא חסם מלרע של A אם $\forall a\in A:a\geq m$
\item חסם מלעיל של A נקרא מקסימום אם הוא שייך לקבוצה A (בעצם המקסימום זה איבר בקבוצה שגדול או שווה לכל איברי הקבוצה)
\item חסם מלרע של A נקרא מינימום אם הוא שייך לקבוצה A
\item חסם מלעיל של A נקרא החסם העליון של A אם אין ל-A חסם מלעיל קטן ממש ממנו, מסמנים אותו $\sup A $ (מהמילה )
\item חסם מלרע של A נקרא החסם התחתון של A אם אין ל-A חסם מלרע גדול ממש ממנו, מסמנים אותו $\inf A $ (מהמילה inferior)
\end{enumerate}
\end{definition}
שימו לב לשלילות הבאות:
M אינו חסם מלעיל אם"ם קיים איבר a>M
m אינו חסם מלרע אם"ם קיים איבר a<m
M אינו חסם עליון אם"ם הוא אינו חסם מלעיל או שקיים חסם מלעיל הקטן ממש ממנו.
m אינו חסם תחתון אם"ם הוא אינו חסם מלרע או שקיים חסם מלרע הגדול ממש ממנו.
\begin{remark} מאחת ההגדרות של $\mathbb{R} $ מקבלים שלכל $A\subseteq\mathbb{R}$ חסומה מלעיל (מלרע) קיים חסם עליון (תחתון). \end{remark}
\begin{thm} תהי $A\subseteq\mathbb{R}$ חסומה מלעיל אזי:
M חסם עליון של A אם"ם M חסם מלעיל של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a>M-\epsilon$
m חסם תחתון של A אם"ם m חסם מלרע של A וגם לכל $0<\epsilon\in\mathbb{R}$ קיים $a\in A$ כך ש $a<m+\epsilon$
\end{thm} במילים: M חסם עליון אם הוא חסם מלעיל וגם אין חסם מלעיל הקטן ממנו. כלומר, כל מספר הקטן ממנו אינו חסם מלעיל. כלומר, אם נקטין את M בגודל כלשהו שאינו אפס נקבל מספר שאינו חסם מלעיל. מספר אינו חסם מלעיל אם"ם יש איבר בקבוצה הגדול ממנו. (ניסוח דומה עבור החסם התחתון.)
\begin{proof} נניח M חסם עליון. מתוך ההגדרה של חסם עליון נובע בפרט ש-M חסם מלעיל. נותר להוכיח כי $$\forall\epsilon >0\exists a\in A:a>M-\epsilon$$ נניח בשלילה כי קיים $\epsilon >0$ כל שלכל האיברים $a\in A$ מתקיים $a\leq M-\epsilon$.\\ לכן, לפי ההגדרה, $M-\epsilon$ הוא חסם מלעיל של הקבוצה. מכיוון שאפסילון גדול מאפס, $M-\epsilon$ הוא חסם מלעיל קטן ממש מהחסם העליון $M$, בסתירה לכך שהוא חסם המלעיל הקטן ביותר.
\end{thm}
<tex>קוד:זנב</tex> </latex2pdf>