אינפי 1/הרצאה 0

מתוך Math-Wiki
גרסה מ־12:51, 14 באוקטובר 2014 מאת Ofekgillon10 (שיחה | תרומות)
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

<latex2pdf> <tex>קוד:ראש</tex>

אינפי, או "חשבון אינפינטסימלי" זהו תחום במתמטיקה החוקר גבולות ופונקציות. התחום נקרא כך משום שבתחילת הפיתוח שלו, המתמטיקאים היו הרבה פחות פורמליים מהיום והשתמשו ב"אינפינטסימליים", גדלים חיוביים קטנים כרצוננו. היום משתמשים בהגדרות הפורמליות של קושי (עם דגש על התנועה האחרונה, באנגלית: $\text{Cauchy}$) $\\\\$ בתחילת הקורס נדבר על האובייקט הכי פשוט, הסדרה, ונחקור את הרעיון של גבול של סדרה. לדוגמה, אינטואיטיבית קל לראות למה נוח לומר ש- $$ 1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\cdots,\frac{1}{n},\cdots \to 0 $$ כאשר החץ מייצג את המושג "שואף ל-". מצד שני, למה שואפת הסדרה הבאה? $$ 0,1,0,1,0,1,\cdots $$ אחרי שנסיים עם סדרות, נחקור סוג מסוים של סדרה, ה"טור", דבר שניתן לחשוב עליו כעל סכום אינסופי. לדוגמה, כולנו ראינו בתיכון את הטור הבא: $$\sum_{n=0}^\infty \frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots = 2$$ אנחנו נחקור הסמסטר הזה בעיקר אם טור כלשהו מתכנס (שואף למספר כלשהוא) או מתבדר (לא מתכנס), ופחות נתעסק לאן הטור מתכנס, בזה נוגעים יותר באינפי $2$. לדוגמה, בניגוד למה שנראה במבט ראשון, הטור הבא לא מתכנס למרות שהמחוברים עצמם שואפים ל-$0$ : $$\sum_{n=1}^\infty \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots $$ כשנסיים טורים, נתחיל לחקור פונקציות ממשיות ואת התכונות שלהן, בפרט נרחיב על סוג מסויים של פונקציות: פונקציות רציפות (אינטואיטיבית, פונקציות שאפשר לצייר את גרף הפונקציה בלי להרים את היד מהדף). לבסוף, נדבר על נגזרות, על משפטים חשובים עם פונקציות גזירות ועל קירוב פונקציה לפולינום ע"י נגזרותיה ("פולינום טיילור"). $\\\\$ שיהיה לנו בהצלחה!

<tex>קוד:זנב</tex> </latex2pdf>