88-132 אינפי 1 סמסטר א' תשעב/מערך תרגול/טורים/מבחנים לחיוביים/דוגמאות
טורים חיובים
קבעו לכל אחד מן הטורים הבאים אם הוא מתכנס או מתבדר, קבעו לאילו ערכים של הפרמטרים הטורים מתכנסים או ענו על השאלה
1
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\frac1{\sqrt[n]{n!}} }[/math]
2
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\frac{\sqrt[m]{n!}}{\sqrt[k]{(2n)!}} }[/math] , כאשר [math]\displaystyle{ m,k\in\N }[/math]
3
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\frac1{\sqrt[n]{(n!)^2}} }[/math]
4
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\big[\sqrt[n]n-1\big] }[/math]
5
- יהיו [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty a_n,\sum_{n=1}^\infty b_n }[/math] טורים חיוביים כך ש- [math]\displaystyle{ \dfrac{a_{n+1}}{a_n}\le\dfrac{b_{n+1}}{b_n} }[/math] .
הוכיחו כי אם [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty b_n }[/math] מתכנס אזי גם [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty a_n }[/math] מתכנס
6
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\frac{n^{n-2}}{e^nn!} }[/math] (רמז: תרגיל קודם)
7
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\frac{(\alpha n)^n}{n!} }[/math]
8
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\frac1{n\ln(n)^\alpha} }[/math]
9
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty|\alpha|^{\sqrt{n}} }[/math]
10
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty|\alpha|^{\ln(n)} }[/math]
11
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\left[1-\cos\left(\tfrac1n\right)\right] }[/math]
12
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\ln\big(\cos(n^{-|\alpha|})\big) }[/math]
13
- [math]\displaystyle{ \displaystyle\sum_{n=1}^\infty\left[\sqrt[n]e-1\right] }[/math]