מד"ר - משוואות דיפרנציאליות רגילות - ארז שיינר
הרצאה 1 הקדמה ומשוואה פרידה
- משוואה דיפרנציאלית מכילה את המשתנה, הפונקציה ונגזרותיה.
- בחקירת פונקציות, במציאת תחומי עלייה וירידה, אנו פותרים את המשוואה [math]\displaystyle{ f'(x)=0 }[/math]. האם זו משוואה דיפרנציאלית?
- לא, כיוון שבמשוואות דיפרנציאלית אנו מחפשים פונקציה שמקיימת את המשוואה לכל ערך של המשתנה.
- כאן הפונקציה נתונה, ואנו מחפשים ערך של המשתנה שמקיים את המשוואה.
נפילה חופשית
- גוף הנופל חופשית נופל בתאוצה שבקירוב היא קבועה [math]\displaystyle{ g=9.82 }[/math].
- נסמן ב[math]\displaystyle{ y(t) }[/math] את הגובה של הגוף (כאשר הכיוון החיובי הוא לכיוון כדור הארץ)
- [math]\displaystyle{ v(t)=y'(t) }[/math] היא המהירות
- [math]\displaystyle{ a(t)=v'(t)=y''(t) }[/math] היא התאוצה.
- לכן על מנת לדעת את מיקומו של הגוף בכל נקודה בזמן, עלינו לפתור את המשוואה [math]\displaystyle{ a(t)=g }[/math], הרי התאוצה קבועה.
- [math]\displaystyle{ y''(t)=g }[/math]
- לכן [math]\displaystyle{ y'(t)=gt+c_1 }[/math]
- לכן [math]\displaystyle{ y(t)=\frac{g}{2}t^2+c_1t+c_2 }[/math]
- כיצד נחשב את הקבועים? לפי תנאי ההתחלה.
- נסמן את הגובה ההתחלתי בתור 0 (נזכור כי הכיוון החיובי הוא לכיוון כדור הארץ). ולכן [math]\displaystyle{ y(0)=0 }[/math] ולכן [math]\displaystyle{ c_2=0 }[/math]
- נניח כי המהירות ההתחלתית גם היא הייתה 0 ולכן [math]\displaystyle{ y'(0)=0 }[/math] ולכן גם [math]\displaystyle{ c_2=0 }[/math].
ריבית דריבית
- נניח שסכום הכסף בבנק לאורך זמן מתואר על ידי הפונקציה [math]\displaystyle{ y(t) }[/math].
- נניח שאנו מרוויחים תשואה של 2 אחוז בשנה, לכן לאחר שנה יתקיים כי [math]\displaystyle{ y(1)=y(0)+0.02\cdot y(0) }[/math].
- אבל מה היה קורה אילו הבנק היה משלם את הריבית פעם בחצי שנה?
- בחצי השנה הראשונה נקבל מחצית מהריבית [math]\displaystyle{ y(\frac{1}{2})=y(0)+\frac{1}{2}\cdot 0.02\cdot y(0) }[/math]
- ובחצי השנה השנייה נקבל מחצית מהריבית, אך סכום הקרן שלנו כבר גדל [math]\displaystyle{ y(1)=y(\frac{1}{2})+\frac{1}{2}\cdot 0.02 \cdot y(\frac{1}{2}) }[/math]
- סה"כ [math]\displaystyle{ y(1)=(1.01)^2\cdot y(0) }[/math]
- זה גדול יותר מהריבית השנתית, כיוון שצברנו ריבית על הקרן וגם על הריבית החצי שנתית.
- האם יש דרך להפוך את התהליך לרציף?
- כלומר, בהנתן שתי נקודות זמן קרובות אנו מעוניינים לקבל את הריבית היחסית על הזמן שעבר:
- [math]\displaystyle{ y(t_2)=y(t_1)+(t_2-t_1)\cdot 0.02 \cdot y(t_1) }[/math]
- נעביר אגף ונחלק [math]\displaystyle{ \frac{y(t_2)-y(t_1)}{t_2-t_2}=0.02\cdot y(t_1) }[/math]
- אם נשאיף [math]\displaystyle{ t_2\to t_1 }[/math] נקבל כי [math]\displaystyle{ y'(t_1)=0.02\cdot y(t_1) }[/math]
- כלומר אנו מעוניינים בפונקציה שמקיימת את המשוואה הדיפרנציאלית [math]\displaystyle{ y'=r\cdot y }[/math] כאשר [math]\displaystyle{ r }[/math] היא הריבית השנתית.
המשוואה [math]\displaystyle{ y'=r\cdot y }[/math]
- בהמשך הקורס נעסוק בשאלה האם למשוואה דיפרנציאלית יש פתרון, וכמה פתרונות יש למשוואה.
- מידי פעם נחזור ונפתור את המשוואה הזו בכלים שונים.
- כעת נשים לב כי:
- [math]\displaystyle{ y'-ry=0 }[/math]
- [math]\displaystyle{ e^{-rt}(y'-ry)=0 }[/math]
- [math]\displaystyle{ (e^{-rt}y)'=0 }[/math]
- כיוון שהנגזרת שווה אפס הפונקציה קבועה [math]\displaystyle{ e^{-rt}y=C }[/math]
- סה"כ [math]\displaystyle{ y=Ce^{rt} }[/math]
- על מנת לחשב את הקבוע C עבור המקרה של ריבית דריבית, עלינו לדעת כמה כסף היה בחשבון בזמן t=0.
- שימו לב שלכל תנאי התחלה קיבלנו פתרון יחיד.
סדר ומעלה
- משוואה דיפרנציאלית נקראת מסדר n אם הנגזרת הגבוהה ביותר היא מסדר n.
- המשוואה [math]\displaystyle{ y''=g }[/math] היא משוואה מסדר שני.
- המשוואה [math]\displaystyle{ y'=ry }[/math] היא משוואה מסדר ראשון.
- משוואה דיפרנציאלית נקראת ממעלה n אם הנגזרת מהסדר הגבוה ביותר היא ממעלה n.
- המשוואה [math]\displaystyle{ (y''')^2+(y')^5=y+sin(t) }[/math] היא מסדר 3 ומעלה 2.
משוואות פרידות
- משוואה דיפרנציאלית נקראת פרידה אם היא מהצורה [math]\displaystyle{ y'=f(y)g(x) }[/math].
- נהוג גם להחליף [math]\displaystyle{ y'=\frac{dy}{dx} }[/math] ולכן המשוואה תרשם כך [math]\displaystyle{ dy=f(y)g(x)dx }[/math].
- לבסוף, אם נזהר עם חלוקה באפס, משוואה פרידה באופן כללי יכולה להיות מהצורה [math]\displaystyle{ f(y)g(x)dy +h(y)r(x)dx=0 }[/math], כלומר [math]\displaystyle{ y'=-\frac{h(y)r(x)}{f(y)g(x)} }[/math].
- משוואות פרידות אנו יכולים לפתור באמצעות אינטגרלים באופן הבא:
- ראשית נפריד (ומכאן השם) את המשתנים לשני צידי המשוואה:
- [math]\displaystyle{ f(y)y'=g(x) }[/math]
- הקדומות של שני הצדדים שוות עד כדי קבוע.
- [math]\displaystyle{ \int f(y)y'dx=\{t=y(x),dt=y'dx\}=\int f(t)dt }[/math]
- במקום t נשאר עם המשתנה y ובעצם אנו מחשבים אינטגרלים לשני הצדדים [math]\displaystyle{ f(y)dy=g(x)dx }[/math], כל אחד לפי המשתנה שלו!
- לדוגמא נפתור את המשוואה [math]\displaystyle{ y'=r\cdot y }[/math] כמשוואה פרידה.
- ראשית נפריד את המשתנים ונקבל כי [math]\displaystyle{ \frac{1}{y}dy=rdx }[/math].
- נשים לב כי הנחנו כאן כי [math]\displaystyle{ y=\neq 0 }[/math].
- כעת [math]\displaystyle{ \int \frac{1}{y}dy=ln|y| }[/math].
- [math]\displaystyle{ \int rdx=rx }[/math].
- וביחד [math]\displaystyle{ ln|y|=rx+C }[/math].
- לכן [math]\displaystyle{ |y|=e^{rx+C}=e^C\cdot e^{rx} }[/math].
- לכן [math]\displaystyle{ y=\pm e^C\cdot e^{rx} }[/math].
- כעת, קל לראות מהצבה במשוואה כי y=0 גם פותר את המשוואה.
- בסה"כ הפתרון הכללי הוא (שוב) [math]\displaystyle{ y=Ce^{rx} }[/math].
- שימו לב - חלקנו למקרים בהם הפונקציה שונה מאפס או קבועה אפס, אך לא טיפלנו במקרים בהם הפונקציה מידי פעם שווה אפס.
- בתרגיל זה איננו צריכים, כי מצאנו את הפתרון הכללי בדרך פשוטה יותר למעלה.
- בהמשך, משפט הקיום והיחידות יעזור לנו להתמודד עם השאלה הזו, אך באופן כללי לא נעסוק הרבה במקרי קצה בקורס זה.
הפיכת משוואה לפרידה
- נביט במשוואה [math]\displaystyle{ y'=(x+y)^2 }[/math] שאינה משוואה פרידה.
- נדגים עכשיו טריק שיהפוך את המשוואה לפרידה.
- נגדיר את הפונקציה [math]\displaystyle{ z=x+y }[/math].
- מתקיים כי [math]\displaystyle{ z'=1+y' }[/math] וביחד המשוואה המקורית מקבלת את הצורה [math]\displaystyle{ z'-1=z^2 }[/math].
- זוהי משוואה פרידה [math]\displaystyle{ \frac{1}{1+z^2}dz=dx }[/math].
- נפעיל אינטגרל על שני הצדדים ונקבל כי [math]\displaystyle{ \arctan(z)=x+C }[/math]
- ולכן [math]\displaystyle{ z=\tan(x+C) }[/math]
- ולכן [math]\displaystyle{ x+y=\tan(x+C) }[/math]
- [math]\displaystyle{ y=\tan(x+C)-x }[/math]
- שימו לב לדוגמא, כאן לא התייחסנו למקרה הקצה בו [math]\displaystyle{ x+C }[/math] מחוץ לתחום [math]\displaystyle{ (-\frac{\pi}{2},\frac{\pi}{2}) }[/math].
- שיטה אחת לוודא שהפתרון שלנו אכן נכון היא להציב את התוצאה שקיבלנו ישירות במשוואה.
- על מנת לדעת אם לא פספסנו פתרונות אחרים, נעזר בהמשך במשפט הקיום והיחידות.
- אבל כאמור - אנחנו לא נתייחס באופן כזה לכל מקרה קצה בהמשך הקורס.
הרצאה 2 מד"ר הומוגנית, מד"ר לינאריות מסדר ראשון ומשוואת ברנולי
מד"ר הומוגנית
- פונקציה [math]\displaystyle{ f(x,y) }[/math] נקראת הומוגנית מסדר k אם לכל [math]\displaystyle{ \lambda\neq 0 }[/math] מתקיים כי [math]\displaystyle{ f(\lambda x,\lambda y)=\lambda^k f(x,y) }[/math].
- לדוגמא [math]\displaystyle{ f(x,y)=\frac{x^2+xy}{x+y} }[/math] הומוגנית מסדר 1.
- טענה: פונקציה [math]\displaystyle{ f(x,y) }[/math] היא מהצורה [math]\displaystyle{ \varphi(\frac{y}{x}) }[/math] לכל [math]\displaystyle{ x\neq 0 }[/math] אם"ם היא הומוגנית מסדר [math]\displaystyle{ 0 }[/math] לכל [math]\displaystyle{ x\neq 0 }[/math].
- הוכחה:
- אם [math]\displaystyle{ f(x,y)=\varphi(\frac{y}{x}) }[/math] אזי לכל [math]\displaystyle{ x\neq 0 }[/math] מתקיים [math]\displaystyle{ f(\lambda x,\lambda y)=\varphi(\frac{\lambda y}{\lambda x})=\varphi(\frac{y}{x})=\lambda^0 f(x,y) }[/math].
- אם [math]\displaystyle{ f(\lambda x,\lambda y)=f(x,y) }[/math], נציב [math]\displaystyle{ \lambda=\frac{1}{x} }[/math] ונקבל כי [math]\displaystyle{ f(x,y)=f(1,\frac{y}{x})=\varphi(\frac{y}{x}) }[/math].
- מד"ר הומוגנית (בניגוד למד"ר לינארית הומוגנית שנראה בהמשך) היא משוואה מהצורה [math]\displaystyle{ y'=f(x,y) }[/math] כאשר [math]\displaystyle{ f(x,y) }[/math] הומוגנית מסדר [math]\displaystyle{ 0 }[/math].
- נפתור מד"ר הומוגנית באמצעות ההצבה [math]\displaystyle{ z=\frac{y}{x} }[/math] באופן הבא:
- ראשית נסמן [math]\displaystyle{ y'=\varphi(\frac{y}{x}) }[/math].
- כעת נגזור את שני צידי המשוואה [math]\displaystyle{ zx=y }[/math], ונקבל כי [math]\displaystyle{ z'x+z=y' }[/math].
- לכן לאחר החלפת המשתנה קיבלנו משוואה פרידה [math]\displaystyle{ z'x+z=\varphi(z) }[/math].
- נפריד את המשתנים [math]\displaystyle{ \frac{1}{\varphi(z)-z}dz=\frac{1}{x}dx }[/math].
- ולכן [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\ln|x|+C }[/math].
- נמצא את [math]\displaystyle{ z }[/math] ונציב בחזרה [math]\displaystyle{ y=zx }[/math].
- דוגמא - נפתור את המשוואה [math]\displaystyle{ y'=\frac{x^2+y^2}{xy} }[/math]
- [math]\displaystyle{ \varphi(\frac{y}{x})=f(1,\frac{y}{x})=\frac{1+(\frac{y}{x})^2}{\frac{y}{x}} }[/math]
- [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\int \frac{1}{\frac{1+z^2}{z}-z}dz=\int z dz=\frac{z^2}{2} }[/math]
- [math]\displaystyle{ \frac{z^2}{2}=ln|x|+C }[/math]
- [math]\displaystyle{ z=\pm\sqrt{ln(x^2)+C} }[/math]
- ולבסוף [math]\displaystyle{ y=\pm x\sqrt{ln(x^2)+C} }[/math]
- דוגמא - נפתור את המשוואה [math]\displaystyle{ xdy-\left(x\cdot\sin^2(\frac{y}{x})+y\right)dx=0 }[/math]
- [math]\displaystyle{ y'=\frac{x\cdot\cos^2(\frac{y}{x})+y}{x} }[/math]
- [math]\displaystyle{ \varphi(\frac{y}{x})=f(1,\frac{y}{x})=\cos^2(\frac{y}{x})+\frac{y}{x} }[/math]
- [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\int \frac{1}{\cos^2(z)}dz=\tan(z) }[/math]
- [math]\displaystyle{ \tan(z)=\ln|x|+c }[/math]
- [math]\displaystyle{ z=\arctan(ln|x|+C) }[/math]
- [math]\displaystyle{ y=x\cdot \arctan(ln|x|+C) }[/math]
מד"ר לינארית מסדר ראשון
- הגדרה: משוואה מסדר ראשון נקראת לינארית אם היא מהצורה [math]\displaystyle{ y'+p(x)\cdot y=q(x) }[/math].
- מד"ר לינארית הומוגנית (בניגוד למד"ר הומוגנית שראינו לעיל) היא מהצורה [math]\displaystyle{ y'+p(x)\cdot y=0 }[/math].
- נחשב נוסחא לפתרון מד"ר לינארית כללית ע"י מציאת פתרון למשוואה לינארית הומוגנית ובאמצעות שיטת וריאצית המקדמים.
- נשים לב כי המשוואה הלינארית ההומוגנית [math]\displaystyle{ y'+p(x)\cdot y=0 }[/math] היא פרידה.
- נפריד את המשתנים ונקבל [math]\displaystyle{ \frac{1}{y}dy=-p(x)dx }[/math].
- נבצע אינטגרציה ונקבל כי [math]\displaystyle{ ln|y|=-\int p(x)dx +C }[/math].
- ולכן [math]\displaystyle{ y=C\cdot e^{-\int p(x)dx} }[/math]
- כעת נשתמש בשיטת וריאצית המקדמים על מנת לפתור את המד"ר הלא הומוגנית.
- נציב במקום המקדם הקבוע [math]\displaystyle{ C }[/math] פונקציה [math]\displaystyle{ C(x) }[/math], וננחש שזה פתרון של המד"ר.
- כיוון שאנו מנחשים שזה פתרון של המד"ר, נציב אותו בתוך המשוואה ונמצא (בתקווה) פונקציה [math]\displaystyle{ C(x) }[/math] כך שהמשוואה תתקיים.
- כלומר, נציב [math]\displaystyle{ y=C(x)\cdot e^{-\int p(x)dx} }[/math] במשוואה [math]\displaystyle{ y'+p(x)y=q(x) }[/math].
- נקבל [math]\displaystyle{ C'(x)\cdot e^{-\int p(x)dx}-p(x)\cdot C(x)\cdot e^{-\int p(x)dx} + p(x)\cdot C(x) \cdot e^{-\int p(x)dx}=q(x) }[/math]
- משוואה זו מתקיימת אם"ם [math]\displaystyle{ C'(x)\cdot e^{-\int p(x)dx}=q(x) }[/math].
- כלומר [math]\displaystyle{ C'(x)=q(x)\cdot e^{\int p(x)dx} }[/math].
- לכן נבחר [math]\displaystyle{ C(x)=\int \left[q(x)\cdot e^{\int p(x)dx}\right]dx+C }[/math]
- סה"כ הפתרון הכללי למד"ר הלינארית [math]\displaystyle{ y'+p(x)\cdot y=q(x) }[/math] הוא:
[math]\displaystyle{ e^{-\int p(x)dx}\cdot\left(\int\left(q(x)\cdot e^{\int p(x)dx}\right)+C\right) }[/math]
- דוגמא - המשוואה החביבה עלינו [math]\displaystyle{ y'=ry }[/math]:
- ראשית, נשים לב כי [math]\displaystyle{ p(x)=-r }[/math] ו[math]\displaystyle{ q(x)=0 }[/math].
- כלומר זו מד"ר לינארית הומוגנית, והפתרון הכללי הוא [math]\displaystyle{ y=C\cdot e^{-\int (-r)dx}=C\cdot e^{rx} }[/math]
נפילה חופשית עם מצנח
- גוף בעל מסה [math]\displaystyle{ m }[/math] נמצא בנפילה חופשית, מצד אחד הוא מושפע מכוח הכבידה שנחשב קבוע [math]\displaystyle{ m\cdot g }[/math] ומצד שני כוח התנגדות האוויר שנניח שהוא פרופורציונלי למהירות הנפילה [math]\displaystyle{ b\cdot v }[/math].
- לפי החוק השני של ניוטון [math]\displaystyle{ m\cdot a = gm -b\cdot v }[/math].
- כלומר [math]\displaystyle{ v'=g-\frac{b}{m}v }[/math]
- זו מד"ר לינארית שאינה הומוגנית עם [math]\displaystyle{ p(t)=\frac{b}{m} }[/math] ו[math]\displaystyle{ q(t)=g }[/math].
- לכן הפתרון הכללי למשוואה הוא [math]\displaystyle{ v=e^{-\frac{b}{m}t}\cdot\left(\int\left(g\cdot e^{\frac{b}{m}t}\right)dt+C\right) }[/math]
- לכן [math]\displaystyle{ v=e^{-\frac{b}{m}t}\cdot\left(\frac{gm}{b}e^{\frac{b}{m}t}+C\right) }[/math].
- כלומר [math]\displaystyle{ v=\frac{gm}{b}+C\cdot e^{-\frac{b}{m}t} }[/math].
- הערה: נשים לב שכאשר [math]\displaystyle{ t\to\infty }[/math] הפתרון שואף ל[math]\displaystyle{ \frac{g\cdot m}{b} }[/math] שזו מהירות שיווי המשקל. במהירות התחלתית זו [math]\displaystyle{ C=0 }[/math] והגוף יפול במהירות קבועה.
משוואת ברנולי
- משוואת ברנולי היא משוואה מהצורה [math]\displaystyle{ y'+p(x)\cdot y = q(x)\cdot y^n }[/math] עבור [math]\displaystyle{ n\neq 0,1 }[/math].
- נפתור את המשוואה על ידי הצבה שתהפוך אותה למשוואה לינארית, אותה כבר למדנו לפתור.
- נניח כי [math]\displaystyle{ y\neq 0 }[/math], ונחלק ב[math]\displaystyle{ y^n }[/math].
- נקבל את המשוואה [math]\displaystyle{ \frac{y'}{y^n}+p(x)\cdot y^{1-n}=q(x) }[/math].
- נציב [math]\displaystyle{ z=y^{1-n} }[/math].
- נגזור [math]\displaystyle{ z'=(1-n)\frac{y'}{y^n} }[/math].
- לכן המשוואה היא מהצורה [math]\displaystyle{ \frac{z'}{1-n}+p(x)\cdot z = q(x) }[/math].
- נפתור עבור [math]\displaystyle{ z }[/math] ונציב חזרה לקבל [math]\displaystyle{ y=z^{\frac{1}{1-n}} }[/math].
- דוגמא-