מד"ר - משוואות דיפרנציאליות רגילות - ארז שיינר

מתוך Math-Wiki

הרצאה 1 הקדמה ומשוואה פרידה

  • משוואה דיפרנציאלית מכילה את המשתנה, הפונקציה ונגזרותיה.
  • בחקירת פונקציות, במציאת תחומי עלייה וירידה, אנו פותרים את המשוואה [math]\displaystyle{ f'(x)=0 }[/math]. האם זו משוואה דיפרנציאלית?
  • לא, כיוון שבמשוואות דיפרנציאלית אנו מחפשים פונקציה שמקיימת את המשוואה לכל ערך של המשתנה.
  • כאן הפונקציה נתונה, ואנו מחפשים ערך של המשתנה שמקיים את המשוואה.


נפילה חופשית

  • גוף הנופל חופשית נופל בתאוצה שבקירוב היא קבועה [math]\displaystyle{ g=9.82 }[/math].
  • נסמן ב[math]\displaystyle{ y(t) }[/math] את הגובה של הגוף (כאשר הכיוון החיובי הוא לכיוון כדור הארץ)
  • [math]\displaystyle{ v(t)=y'(t) }[/math] היא המהירות
  • [math]\displaystyle{ a(t)=v'(t)=y''(t) }[/math] היא התאוצה.
  • לכן על מנת לדעת את מיקומו של הגוף בכל נקודה בזמן, עלינו לפתור את המשוואה [math]\displaystyle{ a(t)=g }[/math], הרי התאוצה קבועה.


  • [math]\displaystyle{ y''(t)=g }[/math]
  • לכן [math]\displaystyle{ y'(t)=gt+c_1 }[/math]
  • לכן [math]\displaystyle{ y(t)=\frac{g}{2}t^2+c_1t+c_2 }[/math]


  • כיצד נחשב את הקבועים? לפי תנאי ההתחלה.
  • נסמן את הגובה ההתחלתי בתור 0 (נזכור כי הכיוון החיובי הוא לכיוון כדור הארץ). ולכן [math]\displaystyle{ y(0)=0 }[/math] ולכן [math]\displaystyle{ c_2=0 }[/math]
  • נניח כי המהירות ההתחלתית גם היא הייתה 0 ולכן [math]\displaystyle{ y'(0)=0 }[/math] ולכן גם [math]\displaystyle{ c_2=0 }[/math].


ריבית דריבית

  • נניח שסכום הכסף בבנק לאורך זמן מתואר על ידי הפונקציה [math]\displaystyle{ y(t) }[/math].
  • נניח שאנו מרוויחים תשואה של 2 אחוז בשנה, לכן לאחר שנה יתקיים כי [math]\displaystyle{ y(1)=y(0)+0.02\cdot y(0) }[/math].
  • אבל מה היה קורה אילו הבנק היה משלם את הריבית פעם בחצי שנה?
    • בחצי השנה הראשונה נקבל מחצית מהריבית [math]\displaystyle{ y(\frac{1}{2})=y(0)+\frac{1}{2}\cdot 0.02\cdot y(0) }[/math]
    • ובחצי השנה השנייה נקבל מחצית מהריבית, אך סכום הקרן שלנו כבר גדל [math]\displaystyle{ y(1)=y(\frac{1}{2})+\frac{1}{2}\cdot 0.02 \cdot y(\frac{1}{2}) }[/math]
    • סה"כ [math]\displaystyle{ y(1)=(1.01)^2\cdot y(0) }[/math]
  • זה גדול יותר מהריבית השנתית, כיוון שצברנו ריבית על הקרן וגם על הריבית החצי שנתית.
  • האם יש דרך להפוך את התהליך לרציף?
  • כלומר, בהנתן שתי נקודות זמן קרובות אנו מעוניינים לקבל את הריבית היחסית על הזמן שעבר:
    • [math]\displaystyle{ y(t_2)=y(t_1)+(t_2-t_1)\cdot 0.02 \cdot y(t_1) }[/math]
    • נעביר אגף ונחלק [math]\displaystyle{ \frac{y(t_2)-y(t_1)}{t_2-t_2}=0.02\cdot y(t_1) }[/math]
  • אם נשאיף [math]\displaystyle{ t_2\to t_1 }[/math] נקבל כי [math]\displaystyle{ y'(t_1)=0.02\cdot y(t_1) }[/math]
  • כלומר אנו מעוניינים בפונקציה שמקיימת את המשוואה הדיפרנציאלית [math]\displaystyle{ y'=r\cdot y }[/math] כאשר [math]\displaystyle{ r }[/math] היא הריבית השנתית.


המשוואה [math]\displaystyle{ y'=r\cdot y }[/math]

  • בהמשך הקורס נעסוק בשאלה האם למשוואה דיפרנציאלית יש פתרון, וכמה פתרונות יש למשוואה.
  • מידי פעם נחזור ונפתור את המשוואה הזו בכלים שונים.
  • כעת נשים לב כי:
  • [math]\displaystyle{ y'-ry=0 }[/math]
  • [math]\displaystyle{ e^{-rt}(y'-ry)=0 }[/math]
  • [math]\displaystyle{ (e^{-rt}y)'=0 }[/math]
  • כיוון שהנגזרת שווה אפס הפונקציה קבועה [math]\displaystyle{ e^{-rt}y=C }[/math]
  • סה"כ [math]\displaystyle{ y=Ce^{rt} }[/math]


  • על מנת לחשב את הקבוע C עבור המקרה של ריבית דריבית, עלינו לדעת כמה כסף היה בחשבון בזמן t=0.
  • שימו לב שלכל תנאי התחלה קיבלנו פתרון יחיד.


סדר ומעלה

  • משוואה דיפרנציאלית נקראת מסדר n אם הנגזרת הגבוהה ביותר היא מסדר n.
    • המשוואה [math]\displaystyle{ y''=g }[/math] היא משוואה מסדר שני.
    • המשוואה [math]\displaystyle{ y'=ry }[/math] היא משוואה מסדר ראשון.
  • משוואה דיפרנציאלית נקראת ממעלה n אם הנגזרת מהסדר הגבוה ביותר היא ממעלה n.
    • המשוואה [math]\displaystyle{ (y''')^2+(y')^5=y+sin(t) }[/math] היא מסדר 3 ומעלה 2.


משוואות פרידות

  • משוואה דיפרנציאלית נקראת פרידה אם היא מהצורה [math]\displaystyle{ y'=f(y)g(x) }[/math].
  • נהוג גם להחליף [math]\displaystyle{ y'=\frac{dy}{dx} }[/math] ולכן המשוואה תרשם כך [math]\displaystyle{ dy=f(y)g(x)dx }[/math].
  • לבסוף, אם נזהר עם חלוקה באפס, משוואה פרידה באופן כללי יכולה להיות מהצורה [math]\displaystyle{ f(y)g(x)dy +h(y)r(x)dx=0 }[/math], כלומר [math]\displaystyle{ y'=-\frac{h(y)r(x)}{f(y)g(x)} }[/math].


  • משוואות פרידות אנו יכולים לפתור באמצעות אינטגרלים באופן הבא:
  • ראשית נפריד (ומכאן השם) את המשתנים לשני צידי המשוואה:
  • [math]\displaystyle{ f(y)y'=g(x) }[/math]
  • הקדומות של שני הצדדים שוות עד כדי קבוע.
  • [math]\displaystyle{ \int f(y)y'dx=\{t=y(x),dt=y'dx\}=\int f(t)dt }[/math]
  • במקום t נשאר עם המשתנה y ובעצם אנו מחשבים אינטגרלים לשני הצדדים [math]\displaystyle{ f(y)dy=g(x)dx }[/math], כל אחד לפי המשתנה שלו!


  • לדוגמא נפתור את המשוואה [math]\displaystyle{ y'=r\cdot y }[/math] כמשוואה פרידה.
  • ראשית נפריד את המשתנים ונקבל כי [math]\displaystyle{ \frac{1}{y}dy=rdx }[/math].
  • נשים לב כי הנחנו כאן כי [math]\displaystyle{ y\neq 0 }[/math].
  • כעת [math]\displaystyle{ \int \frac{1}{y}dy=ln|y| }[/math].
  • [math]\displaystyle{ \int rdx=rx }[/math].
  • וביחד [math]\displaystyle{ ln|y|=rx+C }[/math].
  • לכן [math]\displaystyle{ |y|=e^{rx+C}=e^C\cdot e^{rx} }[/math].
  • לכן [math]\displaystyle{ y=\pm e^C\cdot e^{rx} }[/math].
  • כעת, קל לראות מהצבה במשוואה כי y=0 גם פותר את המשוואה.
  • בסה"כ הפתרון הכללי הוא (שוב) [math]\displaystyle{ y=Ce^{rx} }[/math].


  • שימו לב - חלקנו למקרים בהם הפונקציה שונה מאפס או קבועה אפס, אך לא טיפלנו במקרים בהם הפונקציה מידי פעם שווה אפס.
  • בתרגיל זה איננו צריכים, כי מצאנו את הפתרון הכללי בדרך פשוטה יותר למעלה.
  • בהמשך, משפט הקיום והיחידות יעזור לנו להתמודד עם השאלה הזו, אך באופן כללי לא נעסוק הרבה במקרי קצה בקורס זה.

הפיכת משוואה לפרידה

  • נביט במשוואה [math]\displaystyle{ y'=(x+y)^2 }[/math] שאינה משוואה פרידה.
  • נדגים עכשיו טריק שיהפוך את המשוואה לפרידה.
  • נגדיר את הפונקציה [math]\displaystyle{ z=x+y }[/math].
  • מתקיים כי [math]\displaystyle{ z'=1+y' }[/math] וביחד המשוואה המקורית מקבלת את הצורה [math]\displaystyle{ z'-1=z^2 }[/math].
  • זוהי משוואה פרידה [math]\displaystyle{ \frac{1}{1+z^2}dz=dx }[/math].
  • נפעיל אינטגרל על שני הצדדים ונקבל כי [math]\displaystyle{ \arctan(z)=x+C }[/math]
  • ולכן [math]\displaystyle{ z=\tan(x+C) }[/math]
  • ולכן [math]\displaystyle{ x+y=\tan(x+C) }[/math]
  • [math]\displaystyle{ y=\tan(x+C)-x }[/math]


  • שימו לב לדוגמא, כאן לא התייחסנו למקרה הקצה בו [math]\displaystyle{ x+C }[/math] מחוץ לתחום [math]\displaystyle{ (-\frac{\pi}{2},\frac{\pi}{2}) }[/math].
  • שיטה אחת לוודא שהפתרון שלנו אכן נכון היא להציב את התוצאה שקיבלנו ישירות במשוואה.
  • על מנת לדעת אם לא פספסנו פתרונות אחרים, נעזר בהמשך במשפט הקיום והיחידות.
  • אבל כאמור - אנחנו לא נתייחס באופן כזה לכל מקרה קצה בהמשך הקורס.


הרצאה 2 מד"ר הומוגנית, מד"ר לינאריות מסדר ראשון ומשוואת ברנולי

מד"ר הומוגנית

  • פונקציה [math]\displaystyle{ f(x,y) }[/math] נקראת הומוגנית מסדר k אם לכל [math]\displaystyle{ \lambda\neq 0 }[/math] מתקיים כי [math]\displaystyle{ f(\lambda x,\lambda y)=\lambda^k f(x,y) }[/math].
  • לדוגמא [math]\displaystyle{ f(x,y)=\frac{x^2+xy}{x+y} }[/math] הומוגנית מסדר 1.


  • טענה: פונקציה [math]\displaystyle{ f(x,y) }[/math] היא מהצורה [math]\displaystyle{ \varphi(\frac{y}{x}) }[/math] לכל [math]\displaystyle{ x\neq 0 }[/math] אם"ם היא הומוגנית מסדר [math]\displaystyle{ 0 }[/math] לכל [math]\displaystyle{ x\neq 0 }[/math].
  • הוכחה:
    • אם [math]\displaystyle{ f(x,y)=\varphi(\frac{y}{x}) }[/math] אזי לכל [math]\displaystyle{ x\neq 0 }[/math] מתקיים [math]\displaystyle{ f(\lambda x,\lambda y)=\varphi(\frac{\lambda y}{\lambda x})=\varphi(\frac{y}{x})=\lambda^0 f(x,y) }[/math].
    • אם [math]\displaystyle{ f(\lambda x,\lambda y)=f(x,y) }[/math], נציב [math]\displaystyle{ \lambda=\frac{1}{x} }[/math] ונקבל כי [math]\displaystyle{ f(x,y)=f(1,\frac{y}{x})=\varphi(\frac{y}{x}) }[/math].


  • מד"ר הומוגנית (בניגוד למד"ר לינארית הומוגנית שנראה בהמשך) היא משוואה מהצורה [math]\displaystyle{ y'=f(x,y) }[/math] כאשר [math]\displaystyle{ f(x,y) }[/math] הומוגנית מסדר [math]\displaystyle{ 0 }[/math].
  • נפתור מד"ר הומוגנית באמצעות ההצבה [math]\displaystyle{ z=\frac{y}{x} }[/math] באופן הבא:
    • ראשית נסמן [math]\displaystyle{ y'=\varphi(\frac{y}{x}) }[/math].
    • כעת נגזור את שני צידי המשוואה [math]\displaystyle{ zx=y }[/math], ונקבל כי [math]\displaystyle{ z'x+z=y' }[/math].
    • לכן לאחר החלפת המשתנה קיבלנו משוואה פרידה [math]\displaystyle{ z'x+z=\varphi(z) }[/math].
    • נפריד את המשתנים [math]\displaystyle{ \frac{1}{\varphi(z)-z}dz=\frac{1}{x}dx }[/math].
    • ולכן [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\ln|x|+C }[/math].
    • נמצא את [math]\displaystyle{ z }[/math] ונציב בחזרה [math]\displaystyle{ y=zx }[/math].


  • דוגמא - נפתור את המשוואה [math]\displaystyle{ y'=\frac{x^2+y^2}{xy} }[/math]
    • [math]\displaystyle{ \varphi(\frac{y}{x})=f(1,\frac{y}{x})=\frac{1+(\frac{y}{x})^2}{\frac{y}{x}} }[/math]
    • [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\int \frac{1}{\frac{1+z^2}{z}-z}dz=\int z dz=\frac{z^2}{2} }[/math]
    • [math]\displaystyle{ \frac{z^2}{2}=ln|x|+C }[/math]
    • [math]\displaystyle{ z=\pm\sqrt{ln(x^2)+C} }[/math]
    • ולבסוף [math]\displaystyle{ y=\pm x\sqrt{ln(x^2)+C} }[/math]


  • דוגמא - נפתור את המשוואה [math]\displaystyle{ xdy-\left(x\cdot\cos^2(\frac{y}{x})+y\right)dx=0 }[/math]
    • [math]\displaystyle{ y'=\frac{x\cdot\cos^2(\frac{y}{x})+y}{x} }[/math]
    • [math]\displaystyle{ \varphi(\frac{y}{x})=f(1,\frac{y}{x})=\cos^2(\frac{y}{x})+\frac{y}{x} }[/math]
    • [math]\displaystyle{ \int \frac{1}{\varphi(z)-z}dz=\int \frac{1}{\cos^2(z)}dz=\tan(z) }[/math]
    • [math]\displaystyle{ \tan(z)=\ln|x|+c }[/math]
    • [math]\displaystyle{ z=\arctan(ln|x|+C) }[/math]
    • [math]\displaystyle{ y=x\cdot \arctan(ln|x|+C) }[/math]


מד"ר לינארית מסדר ראשון

  • הגדרה: משוואה מסדר ראשון נקראת לינארית אם היא מהצורה [math]\displaystyle{ y'+p(x)\cdot y=q(x) }[/math].
  • מד"ר לינארית הומוגנית (בניגוד למד"ר הומוגנית שראינו לעיל) היא מהצורה [math]\displaystyle{ y'+p(x)\cdot y=0 }[/math].
  • נחשב נוסחא לפתרון מד"ר לינארית כללית ע"י מציאת פתרון למשוואה לינארית הומוגנית ובאמצעות שיטת וריאצית המקדמים.


  • נשים לב כי המשוואה הלינארית ההומוגנית [math]\displaystyle{ y'+p(x)\cdot y=0 }[/math] היא פרידה.
  • נפריד את המשתנים ונקבל [math]\displaystyle{ \frac{1}{y}dy=-p(x)dx }[/math].
  • נבצע אינטגרציה ונקבל כי [math]\displaystyle{ ln|y|=-\int p(x)dx +C }[/math].
  • ולכן [math]\displaystyle{ y=C\cdot e^{-\int p(x)dx} }[/math]


  • כעת נשתמש בשיטת וריאצית המקדמים על מנת לפתור את המד"ר הלא הומוגנית.
  • נציב במקום המקדם הקבוע [math]\displaystyle{ C }[/math] פונקציה [math]\displaystyle{ C(x) }[/math], וננחש שזה פתרון של המד"ר.
  • כיוון שאנו מנחשים שזה פתרון של המד"ר, נציב אותו בתוך המשוואה ונמצא (בתקווה) פונקציה [math]\displaystyle{ C(x) }[/math] כך שהמשוואה תתקיים.


  • כלומר, נציב [math]\displaystyle{ y=C(x)\cdot e^{-\int p(x)dx} }[/math] במשוואה [math]\displaystyle{ y'+p(x)y=q(x) }[/math].
  • נקבל [math]\displaystyle{ C'(x)\cdot e^{-\int p(x)dx}-p(x)\cdot C(x)\cdot e^{-\int p(x)dx} + p(x)\cdot C(x) \cdot e^{-\int p(x)dx}=q(x) }[/math]
  • משוואה זו מתקיימת אם"ם [math]\displaystyle{ C'(x)\cdot e^{-\int p(x)dx}=q(x) }[/math].
  • כלומר [math]\displaystyle{ C'(x)=q(x)\cdot e^{\int p(x)dx} }[/math].
  • לכן נבחר [math]\displaystyle{ C(x)=\int \left[q(x)\cdot e^{\int p(x)dx}\right]dx+C }[/math]


  • סה"כ הפתרון הכללי למד"ר הלינארית [math]\displaystyle{ y'+p(x)\cdot y=q(x) }[/math] הוא:
[math]\displaystyle{ e^{-\int p(x)dx}\cdot\left(\int\left(q(x)\cdot e^{\int p(x)dx}\right)+C\right) }[/math]


  • דוגמא - המשוואה החביבה עלינו [math]\displaystyle{ y'=ry }[/math]:
    • ראשית, נשים לב כי [math]\displaystyle{ p(x)=-r }[/math] ו[math]\displaystyle{ q(x)=0 }[/math].
    • כלומר זו מד"ר לינארית הומוגנית, והפתרון הכללי הוא [math]\displaystyle{ y=C\cdot e^{-\int (-r)dx}=C\cdot e^{rx} }[/math]


נפילה חופשית כולל התנגדות אוויר

  • גוף בעל מסה [math]\displaystyle{ m }[/math] נמצא בנפילה חופשית, מצד אחד הוא מושפע מכוח הכבידה שנחשב קבוע [math]\displaystyle{ m\cdot g }[/math] ומצד שני מכוח התנגדות האוויר.
  • במהירויות גבוהות נניח שהוא פרופורציונלי למהירות הנפילה בריבוע [math]\displaystyle{ b\cdot v^2 }[/math], ובמהירויות נמוכות נניח שהוא פרופורציונלי למהירות הנפילה [math]\displaystyle{ bv }[/math].


במהירות גבוהה
  • לפי החוק השני של ניוטון [math]\displaystyle{ m\cdot a = gm -b\cdot v^2 }[/math].
  • כלומר [math]\displaystyle{ v'=g-\frac{b}{m}v^2 }[/math]
  • נבצע הפרדת משתנים [math]\displaystyle{ \frac{1}{g-\frac{b}{m}v^2}dv=dt }[/math]
  • נבצע פירוק לשברים חלקיים:
  • [math]\displaystyle{ \frac{1}{g-\frac{b}{m}v^2}=\frac{1}{(\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v)(\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v)}=\frac{1}{2\sqrt{g}}\left(\frac{1}{\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v}+\frac{1}{\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v}\right) }[/math]
  • ולכן [math]\displaystyle{ \int \frac{1}{g-\frac{b}{m}v^2}dv=\frac{\sqrt{b}}{2\sqrt{g\cdot m}}\ln\left|\frac{\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v}{\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v}\right| }[/math]
  • מצד שני [math]\displaystyle{ \int dt=t+c }[/math]
  • לכן [math]\displaystyle{ \frac{\sqrt{g}+\sqrt{\frac{b}{m}}\cdot v}{\sqrt{g}-\sqrt{\frac{b}{m}}\cdot v}=Ce^{2\sqrt{\frac{g\cdot m}{b}}t} }[/math]
  • נסדר קצת [math]\displaystyle{ v=\sqrt{\frac{g\cdot m}{b}}\cdot \left(1-\frac{2}{Ce^{2\sqrt{\frac{g\cdot m}{b}}t}}\right) }[/math]
  • נשים לב שכאשר [math]\displaystyle{ t\to\infty }[/math] אנו מתכנסים למהירות הסופית [math]\displaystyle{ \sqrt{\frac{g\cdot m}{b}} }[/math].
  • אם זו הייתה המהירות ההתחלתית היינו מקבלים פונקצית מהירות קבועה.


במהירות נמוכה
  • לפי החוק השני של ניוטון [math]\displaystyle{ m\cdot a = gm -b\cdot v }[/math].
  • כלומר קיבלנו את המד"ר הלינארית [math]\displaystyle{ v'+\frac{b}{m}v=g }[/math].
  • ולכן הפתרון הוא [math]\displaystyle{ v=e^{-\frac{b}{m}t}\cdot\left(\int ge^{\frac{b}{m}t}dt+C\right)=\frac{g\cdot m}{b}+Ce^{-\frac{b}{m}t} }[/math].
  • וכאשר [math]\displaystyle{ t\to\infty }[/math] המהירות שואפת למהירות הסופית [math]\displaystyle{ \frac{g\cdot m}{b} }[/math].


משוואת ברנולי

  • משוואת ברנולי היא משוואה מהצורה [math]\displaystyle{ y'+p(x)\cdot y = q(x)\cdot y^n }[/math] עבור [math]\displaystyle{ n\neq 0,1 }[/math].
  • נפתור את המשוואה על ידי הצבה שתהפוך אותה למשוואה לינארית, אותה כבר למדנו לפתור.
  • נניח כי [math]\displaystyle{ y\neq 0 }[/math], ונחלק ב[math]\displaystyle{ y^n }[/math].
  • נקבל את המשוואה [math]\displaystyle{ \frac{y'}{y^n}+p(x)\cdot y^{1-n}=q(x) }[/math].
  • נציב [math]\displaystyle{ z=y^{1-n} }[/math].
  • נגזור [math]\displaystyle{ z'=(1-n)\frac{y'}{y^n} }[/math].
  • נקבל משוואה לינארית [math]\displaystyle{ \frac{z'}{1-n}+p(x)\cdot z = q(x) }[/math].
  • נפתור עבור [math]\displaystyle{ z }[/math] ונציב חזרה לקבל [math]\displaystyle{ y=z^{\frac{1}{1-n}} }[/math].


  • דוגמא - נפתור את המשוואה [math]\displaystyle{ y'-2xy=2x^3y^2 }[/math].
    • נציב [math]\displaystyle{ z=\frac{1}{y} }[/math].
    • נקבל [math]\displaystyle{ -z'-2xz=2x^3 }[/math] ולכן [math]\displaystyle{ z'+2xz=-2x^3 }[/math].
    • לכן [math]\displaystyle{ z=e^{-x^2}\cdot\left(\int \left(-2x^3e^{x^2}\right)dx+C\right) }[/math]
    • לכן [math]\displaystyle{ z=e^{-x^2}\cdot\left(e^{x^2}(1-x^2)+C\right) }[/math]
    • לכן [math]\displaystyle{ z=1-x^2+Ce^{-x^2} }[/math]
    • ולבסוף [math]\displaystyle{ y=\frac{1}{1-x^2+Ce^{-x^2}} }[/math]


  • דוגמא - גוף בתנועה עם כוח גרר לא לינארי ביחס למהירות
    • נתון גוף הנע חצי באוויר וחצי בתוך נוזל כלשהו. נניח כי החיכוך עם הנוזל פרופורציונלי למהירות, והחיכוך עם האוויר פרופורציונלי למהירות בריבוע.
    • [math]\displaystyle{ F=-bv-dv^2 }[/math] ולכן [math]\displaystyle{ v'=-bv-dv^2 }[/math] (לצורך הפשטות הכנסנו את המסה לתוך הקבועים).
    • זוהי משוואת ברנולי, נציב [math]\displaystyle{ z=\frac{1}{v} }[/math].
    • לכן [math]\displaystyle{ z'-bz=d }[/math]
    • נפתור את המשוואה הדיפרנציאלית:
      • [math]\displaystyle{ z=e^{bt}\cdot (de^{-bt}+C)=d+Ce^{bt} }[/math]
    • ולכן [math]\displaystyle{ v=\frac{1}{d+Ce^{bt}} }[/math]
    • כמובן שכאשר [math]\displaystyle{ t\to\infty }[/math] המהירות מתכנסת מהר מאד לאפס.

הרצאה 3 משוואות מדוייקות ומשפט הקיום והיחידות

הקדמה - פונקציות בשני משתנים

  • נגזרות חלקיות
    • דוגמא עבור [math]\displaystyle{ f(x,y)=x^2+xy }[/math] מתקיים [math]\displaystyle{ f_x=\frac{\partial f}{\partial x}=2x+y }[/math] ו[math]\displaystyle{ f_y=\frac{\partial f}{\partial y}=x }[/math]
  • עבור פונקציות דיפרנציאביליות (כמו הפונקציות האלמנטריות), מתקיים כי [math]\displaystyle{ f_{xy}=f_{yx} }[/math] (כלומר סדר הנגזרות לא משנה).
  • כלל השרשרת: אם [math]\displaystyle{ g(t)=f(x(t),y(t)) }[/math] אזי [math]\displaystyle{ g'(t)=\frac{\partial f}{\partial x}\cdot x'(t)+\frac{\partial f}{\partial y}\cdot y'(t) }[/math]
  • בפרט, עבור [math]\displaystyle{ g(x)=f(x,y(x)) }[/math] מתקיים [math]\displaystyle{ g'(x)=\frac{\partial f}{\partial x}\cdot 1 + \frac{\partial f}{\partial y}\cdot y' }[/math]


מד"ר מדוייקת

  • מד"ר מסדר ראשון נקראת מדוייקת אם היא מהצורה [math]\displaystyle{ U_x(x,y)dx+U_y(x,y)dy=0 }[/math], עבור [math]\displaystyle{ U(x,y) }[/math] דיפרנציאבילית.
  • פתרון המד"ר ניתן בצורה סתומה על ידי המשוואה [math]\displaystyle{ U(x,u)=C }[/math], כאשר C קבוע כלשהו.
  • מד"ר מהצורה [math]\displaystyle{ Pdx+Qdy=0 }[/math] היא מדוייקת אם"ם [math]\displaystyle{ P_y=Q_x }[/math] ו[math]\displaystyle{ P,Q }[/math] בעלות נגזרות רציפות.


  • הוכחה לפתרון המד"ר המדויקת:
    • נגזור את הפונקציה [math]\displaystyle{ g(x)=U(x,y(x)) }[/math] לפי המשתנה [math]\displaystyle{ x }[/math] באמצעות כלל השרשרת ונקבל כי [math]\displaystyle{ g'(x)=U_x(x,y)+U_y(x,y)y' }[/math]
    • לפי הנתון [math]\displaystyle{ U_x(x,y)dx+U_y(x,y)dy=0 }[/math] נובע כי [math]\displaystyle{ g'(x)=0 }[/math] ולכן [math]\displaystyle{ g(x)=U(x,y)=C }[/math] פונקציה קבועה.


  • הוכחה לתנאי השקול למד"ר מדויקת:
    • כיוון ראשון, נניח [math]\displaystyle{ Pdx+Qdy=0 }[/math] מדוייקת.
      • לכן קיימת [math]\displaystyle{ U(x,y) }[/math] דיפרנציאבילית כך ש [math]\displaystyle{ P=U_x,Q=U_y }[/math].
      • לכן [math]\displaystyle{ P_y=U_{xy}=U_{yx}=Q_x }[/math].
    • כיוון שני, נניח כי [math]\displaystyle{ P_y=Q_x }[/math].
      • אנו מחפשים [math]\displaystyle{ U(x,y) }[/math] עבורה [math]\displaystyle{ P=U_x }[/math].
      • נעשה אינטגרציה לפי [math]\displaystyle{ x }[/math] ונקבל כי [math]\displaystyle{ U(x,y)=\int P(x,y)dx + c(y) }[/math].
      • לכן ברור כי [math]\displaystyle{ U_x=P }[/math], השאלה היא אם ניתן לבחור [math]\displaystyle{ c(y) }[/math] עבורו [math]\displaystyle{ U_y=Q }[/math].
      • כלומר אנו רוצים [math]\displaystyle{ c'(y)=Q-\frac{\partial}{\partial y}\int P(x,y)dx }[/math]
      • משוואה זו תהיה פתירה, אם הצד הימני הוא פונקציה שאינה תלוייה בx.
      • אכן [math]\displaystyle{ \frac{\partial}{\partial x}\left(Q-\frac{\partial}{\partial y}\int P(x,y)dx\right)=Q_x-P_y=0 }[/math].


  • דוגמא: נפתור את המשוואה [math]\displaystyle{ (2x+6y)dx+(6x+3y^2)dy=0 }[/math].
    • ראשית נוודא שמדובר במשוואה מדוייקת: [math]\displaystyle{ P_y=Q_x=6 }[/math].
    • נבצע אינטגרציה [math]\displaystyle{ U=\int Pdx +c(y)= x^2+6xy +c(y) }[/math].
    • נגזור לפי y ונקבל כי [math]\displaystyle{ Q=U_y=6x+c'(y) }[/math].
    • לכן [math]\displaystyle{ c'(y)=Q-6x=3y^2 }[/math].
    • לכן [math]\displaystyle{ c(y)=y^3 }[/math] וסה"כ [math]\displaystyle{ U(x,y)=x^2+6xy+y^3 }[/math].
    • לכן הפתרון למד"ר הוא [math]\displaystyle{ x^2+6xy+y^3=C }[/math].


גורם אינטגרציה

  • לעיתים המד"ר אינה מדוייקת, אך ניתן לכפול אותה בפונקציה (שנקרא לה גורם אינטגרציה) וכך נהפוך אותה למדוייקת.
  • באופן כללי אנו לא יודעים למצוא את גורם האינטגרציה, אבל נביט במקרה בו קיים גורם אינטגרציה שתלוי בx בלבד.


  • תהי מד"ר [math]\displaystyle{ Pdx+Qdy=0 }[/math], ונניח שקיים לה גורם אינטגרציה [math]\displaystyle{ \mu(x) }[/math] התלוי בx בלבד.
  • כלומר [math]\displaystyle{ \mu\cdot Pdx+\mu\cdot Qdy=0 }[/math] מדוייקת.
  • לכן [math]\displaystyle{ (\mu\cdot P)_y=(\mu\cdot Q)_x }[/math].
  • כלומר [math]\displaystyle{ \mu\cdot P_y=\mu'\cdot Q+\mu\cdot Q_x }[/math].
  • לכן [math]\displaystyle{ \frac{\mu'}{\mu}=\frac{P_y-Q_x}{Q} }[/math].
  • ניתן לפתור משוואה זו אם הצד הימני תלוי בx בלבד, כיוון שהצד השמאלי תלוי בx בלבד.
  • במקרה זה, פתרון יהיה [math]\displaystyle{ \mu(x)=e^{\int\left(\frac{P_y-Q_x}{Q}\right)dx} }[/math]


  • דוגמא - המשוואה [math]\displaystyle{ y'=ry }[/math].
    • המשוואה הינה [math]\displaystyle{ -rydx+dy=0 }[/math].
    • [math]\displaystyle{ P_y=-r\neq 0=Q_x }[/math]
    • מתקיים כי [math]\displaystyle{ \frac{P_y-Q_x}{Q}=-r }[/math] תלוי בx בלבד.
    • לכן יש גורם אינטגרציה [math]\displaystyle{ \mu(x,y)=e^{-rx} }[/math]
    • נכפול את המשוואה בגורם האינטגרציה.
    • [math]\displaystyle{ -re^{-rx}ydx+e^{-rx}dy=0 }[/math].
    • כעת [math]\displaystyle{ P_y=-re^{-rx}=Q_x }[/math].
    • [math]\displaystyle{ U(x,y)=\int Pdx +c(y) = e^{-rx}y+c(y) }[/math]
    • [math]\displaystyle{ Q=U_y=e^{-rx}+c'(y) }[/math].
    • לכן [math]\displaystyle{ c'(y)=0 }[/math] ואפשר לבחור [math]\displaystyle{ c(y)=0 }[/math].
    • סה"כ [math]\displaystyle{ U(x,y)=e^{-rx}y=C }[/math].
    • (כך פתרנו למעשה את משוואה זו בשיעור הראשון.)


  • דוגמא - המשוואה [math]\displaystyle{ (1-x^2y)dx+x^2(y-x)dy=0 }[/math].
    • [math]\displaystyle{ \frac{P_y-Q_x}{Q}=\frac{-x^2-(2xy-3x^2)}{x^2(y-x)}=\frac{2x(x-y)}{x^2(y-x)}=-\frac{2}{x} }[/math]
    • [math]\displaystyle{ \mu(x)=e^{-2ln(x)}=\frac{1}{x^2} }[/math].
    • אכן המשוואה [math]\displaystyle{ (\frac{1}{x^2}-y)dx+(y-x)dy=0 }[/math] מדוייקת.
      • נבדוק: [math]\displaystyle{ P_y=-1=Q_x }[/math].
    • נפתור את המד"ר:
      • [math]\displaystyle{ U(x,y)=\int Pdx+c(y)=-\frac{1}{x}-yx+c(y) }[/math].
      • [math]\displaystyle{ Q=U_y=-x+c'(y) }[/math].
      • [math]\displaystyle{ c'(y)=y-x+x=y }[/math].
      • [math]\displaystyle{ c(y)=\frac{y^2}{2} }[/math].
      • סה"כ הפתרון למד"ר הוא [math]\displaystyle{ U(x,y)=-\frac{1}{x}-yx+\frac{y^2}{2}=C }[/math].


משפט הקיום והיחידות

בעיית קושי

  • מציאת פתרון למד"ר [math]\displaystyle{ y'=f(x,y) }[/math] המקיימת [math]\displaystyle{ y(x_0)=y_0 }[/math]


שיטת פיקרד

  • נראה את שיטת פיקרד, באמצעותה נוכיח את משפט הקיום והיחידות.
  • נגדיר [math]\displaystyle{ \varphi_0=y_0 }[/math], ולכל [math]\displaystyle{ n }[/math] נגדיר [math]\displaystyle{ \varphi_n=y_0+\int_{x_0}^xf(t,\varphi_{n-1}(t))dt }[/math].
  • מאוחר יותר נוכיח כי סדרת הפונקציות מתכנסת לפתרון של המד"ר.


  • דוגמא - נביט במשוואה (המאד מקורית) [math]\displaystyle{ y'=-ry }[/math].
    • [math]\displaystyle{ \varphi_0=y_0 }[/math]
    • [math]\displaystyle{ \varphi_1=y_0+\int_{x_0}^x(-ry_0)dt=y_0+y_0(-r(x-x_0)) }[/math]
    • [math]\displaystyle{ \varphi_2=y_0+\int_{x_0}^x\left(-r)\cdot(y_0-r\cdot y_0(t-x_0)\right)dt=y_0+y_0(-r(x-x_0))+y_0\frac{(-r(x-x_0))^2}{2} }[/math]
    • [math]\displaystyle{ \varphi_3=y_0+\int_{x_0}^x\varphi_2dt=y_0+y_0(-r(x-x_0))+y_0\frac{(-r(x-x_0))^2}{2}+y_0\frac{(-r(x-x_0))^2}{3!} }[/math]
    • נמשיך כך, ונקבל סדרת פונקציות המתכנסת ל[math]\displaystyle{ \varphi_n(x)\to y(x)=y_0e^{-r(x-x_0)} }[/math]
    • אם נתון תנאי ההתחלה [math]\displaystyle{ y(0)=C }[/math] נקבל בדיוק את הפתרון [math]\displaystyle{ y=Ce^{-rx} }[/math].

ניסוח משפט הקיום והיחידות

  • תהי [math]\displaystyle{ f(x,y) }[/math] רציפה ובעלת נגזרת [math]\displaystyle{ f_y }[/math] במלבן הסגור [math]\displaystyle{ |x-x_0|\leq a, |y-y_0|\leq b }[/math].
  • נביט בבעיית הקושי [math]\displaystyle{ y'=f(x,y) }[/math], עם תנאי ההתחלה [math]\displaystyle{ y(x_0)=y_0 }[/math]
  • נבחר [math]\displaystyle{ M }[/math] חסם כך ש [math]\displaystyle{ |f(x,y)|\lt M }[/math] במלבן הנתון, ונסמן [math]\displaystyle{ a'=\min\{a,\frac{b}{M}\} }[/math].
  • אזי קיים פתרון יחיד [math]\displaystyle{ y(x) }[/math] לבעיית הקושי בתחום [math]\displaystyle{ |x-x_0|\leq a' }[/math].


  • הערות:
  • שימו לב שהמשפט מבטיח פתרון בתחום מצומצם.
    • אכן ראינו מד"ר שהייתה מוגדרת ורציפה בכל הממשיים, אך לא היה פתרון שמוגדר בכל הממשיים.
    • לכל נקודה יש פתרון מסביבה, גם אם אין פתרון שמוגדר בכל מקום.
  • שימו לב שאם מצאנו פתרון בצורה כלשהי, אנחנו יודעים שהוא יחיד בזכות המשפט (לפחות בסביבה מסויימת).
  • מצד שני, אם הפתרון הכללי שמצאנו לא מקיים את תנאי ההתחלה, סימן שאנחנו צריכים לחפש פתרון שפספסנו.


הרצאה 4 הוכחת משפט הקיום והיחידות

המשוואה האינטגרלית

  • בעיית הקושי [math]\displaystyle{ y'=f(x,y) }[/math] עם [math]\displaystyle{ y(x_0)=y_0 }[/math] שקולה למשוואה [math]\displaystyle{ y(x)=y_0+\int_{x_0}^xf(t,y(t))dt }[/math].
    • בכיוון אחד - נניח כי המשוואה הדיפרנציאלית ותנאי ההתחלה נתונים.
      • אזי [math]\displaystyle{ \int_{x_0}^x y'(t)dt=\int_{x_0}^xf(t,y(t))dt }[/math].
      • לכן [math]\displaystyle{ y(x)-y(x_0)=\int_{x_0}^xf(t,y(t))dt }[/math].
      • ולפי תנאי ההתחלה נקבל כי [math]\displaystyle{ y(x)-y_0=\int_{x_0}^xf(t,y(t))dt }[/math].
    • בכיוון שני, נניח כי המשוואה האינטגרלית נתונה.
      • נגזור את שני הצדדים ונקבל את המשוואה הדיפרנציאלית (נגזרת של פונקצית שטח של פונקציה רציפה).
      • נציב במשוואה האינטגרלית את [math]\displaystyle{ x_0 }[/math] ונקבל [math]\displaystyle{ y(x_0)=y_0+\int_{x_0}^{x_0}f(t,y(t))dt=y_0 }[/math].


הוכחה

  • נוכיח שסדרת הפונקציות בשיטת פיקרד מתכנסת לפתרון יחיד לבעיית הקושי.


  • ראשית נשים לב לתכונה הבאה:
    • כיוון ש[math]\displaystyle{ f_y }[/math] רציפה במלבן סגור היא חסומה נניח ע"י K.
    • לפי משפט לגראנז' נקבל כי [math]\displaystyle{ |f(x,y_1)-f(x,y_2)|\leq K|y_1-y_2| }[/math]


  • נוכיח שסדרת הפונקציות נשארת בתחום המלבן [math]\displaystyle{ |x-x_0|\leq a',|y-y_0|\leq b }[/math] שנמצא בתוך המלבן המקורי ולכן מותר להשתמש בתכונות של [math]\displaystyle{ f }[/math].
    • ראשית [math]\displaystyle{ \varphi_0=y_0 }[/math] כמובן בתוך המלבן.
    • כעת יהי n עבורו הטענה נכונה, אזי [math]\displaystyle{ \varphi_{n+1}=y_0+\int_{x_0}^xf(t,\varphi_n(t))dt }[/math].
    • לכן [math]\displaystyle{ |\varphi_{n+1}-y_0|\leq \int_{x_0}^x|f(t,\varphi_n(t)|dt\leq M(x-x_0)\leq Ma'\leq b }[/math].


  • הערה: בהוכחות הבאות נוכיח עבור [math]\displaystyle{ x\geq x_0 }[/math] ההוכחות עבור [math]\displaystyle{ x\lt x_0 }[/math] דומות.


  • כעת נוכיח שסדרת הפונקציות מתכנסת (במ"ש):
    • ראשית, נשים לב כי [math]\displaystyle{ \varphi_n-y_0=\varphi_n-\varphi_0=\varphi_n-\varphi_{n-1}+\varphi_{n-1}-\varphi_{n-2}+...+\varphi_1-\varphi_0 }[/math].
    • לכן עלינו להוכיח כי הטור [math]\displaystyle{ \sum_{i=1}^n\left(\varphi_i-\varphi_{i-1}\right) }[/math] מתכנס כאשר [math]\displaystyle{ n\to\infty }[/math].
    • ראשית, [math]\displaystyle{ |\varphi_1-\varphi_0|=|y_0+\int_{x_0}^xf(t,y_0)dt-y_0|\leq M(x-x_0) }[/math]
    • כעת [math]\displaystyle{ |\varphi_2-\varphi_1|\leq\int_{x_0}^x|f(t,\varphi_1)-f(t,\varphi_0)|dt\leq \int_{x_0}^xK|\varphi_1-\varphi_0|dt\leq KM\frac{(x-x_0)^2}{2} }[/math]
    • [math]\displaystyle{ |\varphi_3-\varphi_2|\leq \int_{x_0}^{x}K|\varphi_2-\varphi_1|dt=K^2M\frac{(x-x_0)^3}{3!} }[/math]
    • נמשיך כך ונקבל כי [math]\displaystyle{ \left|\sum_{i=1}^n\left(\varphi_i-\varphi_{i-1}\right)\right|\leq \sum_{i=1}^n\left|\varphi_i-\varphi_{i-1}\right|\leq \sum_{i=1}^nK^{n-1}M\frac{(x-x_0)^n}{n!}\leq \sum_{i=1}^nK^{n-1}M\frac{(a')^n}{n!} }[/math]
    • זה טור מתכנס לפי מבחן המנה, ולפי מבחן הM של קושי, הטור המקורי מתכנס במידה שווה.
    • הערה: כיוון ש[math]\displaystyle{ \left|f(x,\varphi_n(x))-f(x,\varphi_{n-1}(x))\right|\leq K|\varphi_n(x)-\varphi_{n-1}(x)| }[/math] אזי גם הסדרה [math]\displaystyle{ f(x,\varphi_n(x)) }[/math] מתכנסת במ"ש באופן דומה.


  • נוכיח שפונקצית הגבול [math]\displaystyle{ \varphi_n\to y }[/math] היא פתרון של בעיית הקושי.
    • נשאיף את שני צידי נוסחאת הנסיגה לאינסוף [math]\displaystyle{ \varphi_n=y_0+\int_{x_0}^{x}f(t,\varphi_{n-1}(t))dt }[/math].
    • נקבל כי [math]\displaystyle{ y(x)=y_0+\int_{x_0}^xf(t,y(t))dt }[/math].
    • הערה: האינטגרל של הסדרה שואף לאינטגרל של פונקצית הגבול בזכות ההתכנסות במ"ש.


  • טענת עזר - תהי [math]\displaystyle{ g }[/math] חסומה כך שלכל [math]\displaystyle{ x\geq x_0 }[/math] בקטע [math]\displaystyle{ |x-x_0|\leq a }[/math] מתקיים כי [math]\displaystyle{ |g|\leq K\int_{x_0}^x|g(t)|dt }[/math] אזי [math]\displaystyle{ g=0 }[/math] לכל [math]\displaystyle{ x\geq x_0 }[/math] בקטע.
    • [math]\displaystyle{ |g|\leq M }[/math].
    • [math]\displaystyle{ |g|\leq K\int_{x_0}^x|g|dt\leq KM(x-x_0) }[/math].
    • [math]\displaystyle{ |g|\leq K\int_{x_0}^x|g|dt\leq \int_{x_0}^x KM(t-x_0)dt=K^2M\frac{(x-x_0)^2}{2} }[/math].
    • נמשיך כך ונקבל שלכל n מתקיים כי [math]\displaystyle{ |g|\leq K^nM\frac{(x-x_0)^n}{n!} }[/math].
    • לכן [math]\displaystyle{ |g|\leq K^n M\frac{a^n}{n!}\to 0 }[/math].
    • לכן [math]\displaystyle{ g=0 }[/math].


  • יהיו שני פתרונות [math]\displaystyle{ y_1,y_2 }[/math] לבעיית הקושי, נוכיח כי [math]\displaystyle{ y_1=y_2 }[/math]:
    • [math]\displaystyle{ |y_2-y_1|=\left|\int_{x_0}^x(f(t,y_1)-f(t,y_2))dt\right|\leq \int_{x_0}^x|f(t,y_1)-f(t,y_2)|dt\leq K\int_{x_0}^x|y_2-y_1|dt }[/math].
    • לכן לפי טענת העזר, [math]\displaystyle{ y_1=y_2 }[/math].


הרצאה 5 מד"ר מסדר גבוה (ובפרט סדר שני), מד"ר לינארית מסדר גבוה

  • נחקור כעת משוואות מהצורה [math]\displaystyle{ f(x,y,y',...,y^{(n)})=0 }[/math]
  • דוגמא:
    • נביט במסה המחוברת לקפיץ עם קבוע k, על משטח ללא חיכוך.
    • נסמן את המרחק של המסה מהמצב הרפוי של הקפיץ בX.
    • הכוח הפועל על המסה הוא [math]\displaystyle{ -kX }[/math].
    • לכן לפי החוק השני של ניוטון [math]\displaystyle{ mX''=-kX }[/math].


הורדת סדר המשוואה

מד"ר מסדר גבוה ללא y

  • אם y אינו מופיע במשוואה פשוט נחליף משתנה [math]\displaystyle{ u=y' }[/math].


  • דוגמא:
    • משוואת נפילה חופשית ללא התנגדות אוויר היא מסדר שני [math]\displaystyle{ mX''=C }[/math].
    • נביט בפונקצית המהירות [math]\displaystyle{ V=X' }[/math] ונקבל את המשוואה [math]\displaystyle{ mV'=C }[/math] מסדר ראשון.

מד"ר מסדר גבוה ללא x

  • אם x אינו מופיע במשוואה נחפש פונקציה של y כך שיתקיים [math]\displaystyle{ y'=p(y) }[/math].
  • דוגמא:
    • נחזור לדוגמא של מסה המחוברת לקפיץ, ולצורך הנוחות נחליף את פונקצית המיקום X בפונקציה y (המשתנה ישאר t).
    • נניח כי המסה היא חלק מקבוע הקפיץ ונביט במשוואה [math]\displaystyle{ y''=-ky }[/math].
    • נחפש פונקציה p של y המקיימת [math]\displaystyle{ y'=p(y) }[/math].
    • לכן [math]\displaystyle{ y''=p'(y)y'=p'\cdot p }[/math].
    • לכן אנחנו רוצים למצוא p פונקציה של y המקיימת את המשוואה [math]\displaystyle{ pp'=-ky }[/math].
      • זו משוואה פרידה [math]\displaystyle{ pdp=-kydy }[/math] ולכן [math]\displaystyle{ \frac{p^2}{2}=-\frac{ky^2}{2}+C }[/math].
      • לכן [math]\displaystyle{ p(y)=\pm\sqrt{C-ky^2} }[/math].
    • לכן קיבלנו את המד"ר הפרידה [math]\displaystyle{ y'=\pm\sqrt{C-ky^2} }[/math].
      • [math]\displaystyle{ \int \frac{dy}{\sqrt{C-ky^2}}=\pm \int dt }[/math].
      • [math]\displaystyle{ \frac{1}{\sqrt{k}}\arcsin\left(\sqrt{\frac{k}{c}}y\right)=\pm t+D }[/math].
      • [math]\displaystyle{ \sqrt{\frac{c}{k}}\cdot sin\left(\pm\sqrt{k}t+D\right) }[/math].
      • שימו לב שהביטוי [math]\displaystyle{ \sqrt{\frac{c}{k}} }[/math] מייצג קבוע חיובי כלשהו.
      • שימו לב שעבור בחירה מתאימה של הפאזה D גם cos הוא פתרון.
    • שימו לב שישנם שני קבועים בפתרון. זה הגיוני, כי אנו צריכים שני תנאי התחלה - מיקום המסה, והמהירות שלה.


מד"ר לינארית

  • מד"ר לינארית היא מד"ר מהצורה [math]\displaystyle{ y^{(n)}+a_{n-1}(x)y^{(n-1)}+...+a_1(x)y'+a_0(x)y=f(x) }[/math].
  • אם [math]\displaystyle{ f(x)\equiv 0 }[/math] אזי המד"ר נקראת הומוגנית.
  • בעיית הקושי למד"ר הלינארית היא המשוואה יחד עם תנאי ההתחלה [math]\displaystyle{ y(x_0)=b_0,y'(x_0)=b_1,...,y^{(n-1)}(x_0)=b_{n-1} }[/math]
  • משפט קיום ויחידות: אם [math]\displaystyle{ a_i(x),f(x) }[/math] רציפות בקטע [math]\displaystyle{ I }[/math] ויהי [math]\displaystyle{ x_0\in I }[/math], אזי קיים פתרון יחיד בקטע [math]\displaystyle{ I }[/math] לבעיית הקושי.


מד"ר לינארית הומוגנית

  • אוסף הפתרונות של מד"ר לינארית הומוגנית הוא תת מרחב וקטורי.
    • פונקצית האפס מקיימת את המשוואה.
    • אם [math]\displaystyle{ y_1,y_2 }[/math] פתרונות, ו[math]\displaystyle{ c\in\mathbb{R} }[/math] קבוע אזי קל לראות על ידי הצבה ישירה שגם [math]\displaystyle{ y_1+cy_2 }[/math] הוא פתרון.


  • תזכורת: [math]\displaystyle{ y_1,...,y_n }[/math] נקראת תלויות לינארית אם קיימים קבועים לא כולם אפס כך ש [math]\displaystyle{ c_1y_1+...+c_ny_n\equiv 0 }[/math] (הצירוף הוא פונקצית האפס).


  • הגדרה: הוורונסיקאן [math]\displaystyle{ W(x) }[/math] של הפונקציות [math]\displaystyle{ y_1,...,y_n }[/math] הוא הדטרמיננטה [math]\displaystyle{ \left|\begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & &\vdots\\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix}\right| }[/math]


  • אם [math]\displaystyle{ y_1,...,y_n }[/math] ת"ל אזי [math]\displaystyle{ W(x)\equiv 0 }[/math].
    • נתון כי [math]\displaystyle{ c_1y_1+...+c_ny_n=0 }[/math]
    • נגזור [math]\displaystyle{ c_1y_1'+...+c_ny_n'=0 }[/math]
    • נמשיך ולגזור ונקבל שלכל [math]\displaystyle{ 0\leq k\leq n-1 }[/math] מתקיים כי [math]\displaystyle{ c_1y_1^{(k)}+...+c_ny_n^{(n-1)}=0 }[/math].
    • לכן [math]\displaystyle{ \begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & &\vdots\\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix}\begin{pmatrix}c_1 \\ c_2 \\ \vdots \\ c_n\end{pmatrix}=0 }[/math]
    • כיוון שלמטריצה יש פתרון לא טריוואלי (ללא תלות בx) היא אינה הפיכה והדטרמיננטה שלה היא אפס.


  • אם [math]\displaystyle{ W(x_0)=0 }[/math] עבור [math]\displaystyle{ x_0\in I }[/math] כלשהו עבור [math]\displaystyle{ y_1,...,y_n }[/math] פתרונות של מד"ר לינארית הומוגנית, אזי הפתרונות ת"ל ו[math]\displaystyle{ W(x)\equiv 0 }[/math].
    • כיוון ש[math]\displaystyle{ W(x_0)=0 }[/math] קיים פתרון לא טריוויאלי למערכת כך שלכל [math]\displaystyle{ 0\leq k\leq n-1 }[/math] מתקיים כי [math]\displaystyle{ c_1y_1^{(k)}+...+c_ny_n^{(n-1)}=0 }[/math].
    • נביט בפונקציה [math]\displaystyle{ g(x)=c_1y_1(x)+...+c_ny_n(x) }[/math], לפי לינאריות גם [math]\displaystyle{ g(x) }[/math] פתרון של המד"ר.
    • כיוון שלכל [math]\displaystyle{ 0\leq k\leq n-1 }[/math] מתקיים כי [math]\displaystyle{ g^{(k)}(x_0)=0 }[/math] ולפי יחידות הפתרון, נובע כי [math]\displaystyle{ g(x)\equiv 0 }[/math] (הרי פונקצית האפס היא פתרון שמקיים את אותם תנאיי ההתחלה).


  • הערה: ייתכנו פונקציות בת"ל שהוורונסיקאן שלהן מתאפס, אם הן לא פתרונות לאותו מד"ר לינארית. למשל [math]\displaystyle{ x^2,x|x| }[/math].


  • דוגמא:
    • נביט בוורונסקיאן של [math]\displaystyle{ e^{\lambda_1x},...,e^{\lambda_nx} }[/math].
    • [math]\displaystyle{ W(x)=\left|\begin{pmatrix} e^{\lambda_1x} & \cdots & e^{\lambda_nx} \\ \vdots & & \vdots \\ \lambda_1^{n-1}e^{\lambda_1x} & \cdots & \lambda_n^{n-1}e^{\lambda_nx} \end{pmatrix}\right|=e^{(\lambda_1+...+\lambda_n)x}\left|\begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ \lambda_1^{n-1}& \cdots & \lambda_n^{n-1} \end{pmatrix}\right| }[/math]
    • זו מטריצת ונדרמונדה ולכן [math]\displaystyle{ W(x)=e^{(\lambda_1+...+\lambda_n)x}\prod_{i\lt j}(\lambda_j-\lambda_i) }[/math]
    • לכן הפונקציות בת"ל אם ורק אם כל הקבועים שונים זה מזה [math]\displaystyle{ \lambda_i\neq\lambda_j }[/math]


  • מרחב הפתרונות של המד"ר הלינארית ההומוגנית הוא ממימד n.
    • לכל [math]\displaystyle{ 0\leq k\leq n-1 }[/math] נגדיר את [math]\displaystyle{ y_k }[/math] להיות הפתרון המקיים את תנאי ההתחלה [math]\displaystyle{ y_k^{(k)}(x_0)=1 }[/math] ואם [math]\displaystyle{ j\neq k }[/math] אז [math]\displaystyle{ y_k^{(j)}(x_0)=0 }[/math].
    • נוכיח שn פתרונות אלה מהווים בסיס.
      • [math]\displaystyle{ W(x_0)=|I|=1 }[/math] ולכן הפתרונות בת"ל.
      • עבור תנאי ההתחלה [math]\displaystyle{ y^{(k)}(x_0)=b_k }[/math] פתרון המקיים תנאיי התחלה אלו הוא [math]\displaystyle{ b_0y_0+...+b_{n-1}y_{n-1} }[/math], ולכן הקבוצה פורשת.


  • דוגמא: משוואת המסה על קפיץ [math]\displaystyle{ x''+kx=0 }[/math]
    • נביט בפתרונות [math]\displaystyle{ x_1=cos\left(\sqrt{k}t\right),x_2=sin\left(\sqrt{k}t\right) }[/math], הן אכן פותרות את המשוואה.
    • נביט בוורונסקיאן [math]\displaystyle{ \left|\begin{pmatrix} cos\left(\sqrt{k}t\right) & sin\left(\sqrt{k}t\right)\\ -\sqrt{k}sin\left(\sqrt{k}t\right) & \sqrt{k}cos\left(\sqrt{k}t\right) \end{pmatrix}\right|=\sqrt{k}\neq 0 }[/math]
    • לכן אלו שני פתרונות בת"ל שפורשים את כל מרחב הפתרונות, ולכן הפתרון הכללי הוא מהצורה [math]\displaystyle{ x(t)=c_1\cdot cos\left(\sqrt{k}t\right) + c_2\cdot sin\left(\sqrt{k}t\right) }[/math]

מד"ר לינארית לא הומוגנית

  • פתרון כללי למד"ר הלינארית שווה לפתרון הכללי למד"ר ההומוגנית ועוד פתרון פרטי למד"ר הלא הומוגנית
    • הוכחה זהה לטיעון לגבי מערכות משוואות לינאריות.


  • דוגמא: [math]\displaystyle{ y''=-ky+g }[/math] מסה התלוייה על קפיץ אנכי, עם השפעת כוח המשיכה. גובה אפס הוא הנקודה בה הקפיץ רפוי, הכיוון החיובי הוא למטה.
    • נמצא פתרון פרטי ע"י ניחוש מושכל.
    • נחפש פתרון מהצורה [math]\displaystyle{ y=a }[/math].
    • נציב ונקבל [math]\displaystyle{ y=\frac{g}{k} }[/math].
  • לכן פתרון כללי למד"ר הוא [math]\displaystyle{ x(t)=c_1\cdot cos\left(\sqrt{k}t\right) + c_2\cdot sin\left(\sqrt{k}t\right)+\frac{g}{k} }[/math].


  • דוגמא: [math]\displaystyle{ x''=-kx+sin(t) }[/math] מסה על קפיץ עם כוח חיצוני שתלוי בזמן.
    • נמצא פתרון פרטי ע"י ניחוש מושכל.
    • נחפש פתרון מהצורה [math]\displaystyle{ x=asin(t) }[/math].
    • [math]\displaystyle{ -asin(t)=-kasin(t)+sin(t) }[/math].
    • [math]\displaystyle{ a(k-1)sin(t)=sin(t) }[/math].
    • משוואה זו תתקיים עבור [math]\displaystyle{ a=\frac{1}{k-1} }[/math].
  • לכן פתרון כללי למד"ר הוא [math]\displaystyle{ x(t)=c_1\cdot cos\left(\sqrt{k}t\right) + c_2\cdot sin\left(\sqrt{k}t\right)+\frac{1}{k-1}sin(t) }[/math].

הרצאה 6 מד"ר לינארית עם מקדמים קבועים

פולינום אופייני

  • נביט במד"ר הלינארית ההומוגנית עם מקדמים קבועים [math]\displaystyle{ y^{(n)}+a_{n-1}y^{(n-1)}+...+a_0y=0 }[/math] כאשר [math]\displaystyle{ a_i\in\mathbb{R} }[/math].
  • דוגמאות:
    • משוואת הקפיץ [math]\displaystyle{ y''+ky=0 }[/math].
    • [math]\displaystyle{ y''-2y'+y=0 }[/math].


  • ננחש פתרון למד"ר מהצורה [math]\displaystyle{ y=e^{\lambda x} }[/math].
  • נציב במד"ר ונקבל [math]\displaystyle{ \lambda^ne^{\lambda x}+a_{n-1}\lambda^{n-1}e^{\lambda x} +...+a_0e^{\lambda x}=0 }[/math].
  • לכן [math]\displaystyle{ \lambda^n+a_{n-1}\lambda^{n-1}+...+a_0=0 }[/math].
  • נגדיר את הפולינום האופייני של המד"ר להיות [math]\displaystyle{ p(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0 }[/math].
  • לכל שורש של הפולינום האופייני, קיבלנו פתרון למד"ר.


  • דוגמא: [math]\displaystyle{ y''=y }[/math]
    • נעביר אגף ונמצא את הפולינום האופייני:
      • [math]\displaystyle{ y''-y=0 }[/math]
      • [math]\displaystyle{ p(x)=x^2-1 }[/math]
    • לכן השורשים של הפולינום האופייני הם [math]\displaystyle{ \pm 1 }[/math].
    • לכן שני פתרונות למד"ר הם [math]\displaystyle{ e^x,e^{-x} }[/math].
    • ראינו שהם בת"ל בעזרת הורונסקיאן ולכן הפתרון הכללי למד"ר ההומוגנית הוא [math]\displaystyle{ c_1e^{x}+c_2e^{-x} }[/math].


  • מה קורה כאשר חסרים שורשים (מרוכבים)?
  • מה קורה כאשר שורש חוזר על עצמו?
  • הפולינום האופייני של המד"ר [math]\displaystyle{ y''+ky=0 }[/math] הוא [math]\displaystyle{ x^2+k }[/math].
  • הפולינום האופייני של המד"ר [math]\displaystyle{ y''-2y+y=0 }[/math] הוא [math]\displaystyle{ x^2-2x+1=(x-1)^2 }[/math].


  • כאשר השורש הוא מרוכב, נעזר באנליזה מרוכבת:
    • ראשית, אם [math]\displaystyle{ a+bi }[/math] שורש של פולינום ממשי גם הצמוד שלו הוא שורש של הפולינום.
    • נזכר גם כי [math]\displaystyle{ e^{ibx}=\cos(bx)+i\sin(bx) }[/math]
    • כעת, נניח שיש זוג שורשים מרוכבים [math]\displaystyle{ a\pm bi }[/math] לכן [math]\displaystyle{ e^{(a\pm bi)x} }[/math] הן פתרונות.
    • לכן גם צירוף לינארי שלהם הוא פתרון:
      • [math]\displaystyle{ \frac{1}{2}\left(e^{ax+ibx}+e^{ax-ibx}\right)=e^{ax}\cos(bx) }[/math]
      • [math]\displaystyle{ \frac{-i}{2}\left(e^{ax+ibx}-e^{ax-ibx}\right)=e^{ax}\sin(bx) }[/math]
      • עבור זוג השורשים המרוכבים הצמודים קיבלנו זוג פתרונות ממשיים בת"ל!


  • דוגמא משוואת הקפיץ [math]\displaystyle{ y''+ky=0 }[/math].
    • הפולינום האופייני הינו [math]\displaystyle{ x^2+k=0 }[/math].
    • שורשי הפולינום האופייני הינם [math]\displaystyle{ \pm\sqrt{k}i }[/math].
    • הפתרונות למד"ר ההומוגנית הם [math]\displaystyle{ e^{0\cdot x}\cos\left(\sqrt{k}x\right),e^{0\cdot x}\sin\left(\sqrt{k}x\right) }[/math].


  • כעת נטפל במקרה בו שורש חוזר על עצמו:
    • ראשית, נביט באופרטור [math]\displaystyle{ \frac{d}{dx} }[/math] ששולח פונקציה לנגזרת שלה, ונסמן ב[math]\displaystyle{ I }[/math] את אופרטור הזהות.
    • למשל המד"ר [math]\displaystyle{ y''-2y+y=0 }[/math] ניתנת להצגה כ[math]\displaystyle{ \left(\frac{d}{dx}^2-2\frac{d}{dx}+I\right)y=0 }[/math].
    • לכן [math]\displaystyle{ \left(\frac{d}{dx}-I\right)\left(\frac{d}{dx}-I\right)y=0 }[/math].
    • הפולינום האופייני של המד"ר הוא [math]\displaystyle{ (x-1)^2=0 }[/math] ולכן [math]\displaystyle{ y=e^x }[/math] הוא פתרון.
    • כעת, נראה כי גם [math]\displaystyle{ xe^x }[/math] הוא פתרון של המד"ר.
      • [math]\displaystyle{ \left(\frac{d}{dx}-I\right)\left(\frac{d}{dx}-I\right)xe^x=\left(\frac{d}{dx}-I\right)(e^x+xe^x-xe^x)=0 }[/math]
    • באופן דומה אפשר להוכיח שאם ריבוי השורש הוא [math]\displaystyle{ n }[/math] אזי לכל [math]\displaystyle{ 0\leq k \leq n-1 }[/math] הביטוי [math]\displaystyle{ x^ke^{\lambda x} }[/math] הוא פתרון.


סיכום מציאת פתרון כללי למד"ר הומוגנית עם מקדמים קבועים

  • מוצאים את הפולינום האופייני, ואת כל השורשים שלו (כולל המרוכבים).
  • לכל שורש ממשי [math]\displaystyle{ \lambda }[/math] מריבוי [math]\displaystyle{ n }[/math] מתאימים הפתרונות [math]\displaystyle{ e^{\lambda x},xe^{\lambda x},...,x^{n-1}e^{\lambda x} }[/math].
  • לכל שורש מרוכב [math]\displaystyle{ a+bi }[/math] מריבוי [math]\displaystyle{ n }[/math] (ידוע שגם הצמוד שלו שורש מאותו ריבוי) מתאימים הפתרונות [math]\displaystyle{ e^{ax}\cos(bx),e^{ax}\sin(bx),xe^{ax}\cos(bx),xe^{ax}\sin(bx),...,x^{n-1}e^{ax}\cos(bx),x^{n-1}e^{ax}\sin(bx) }[/math]
  • סה"כ מצאנו למד"ר מסדר n בדיוק n פתרונות.
  • הפתרונות הללו בת"ל (ללא הוכחה), ולכן הפתרון הכללי הוא צירוף לינארית שלהם.


  • דוגמא: מצאו את הפתרון הכללי של המד"ר [math]\displaystyle{ y^{(4)}-6y'''+14y''-16y'+8y=0 }[/math].
    • ראשית, נמצא את הפולינום האופייני [math]\displaystyle{ p(x)=x^4-6x^3+14x^2-16x+8=0 }[/math].
    • ננחש ש2 הוא שורש, נבצע חילוק, ננחש שוב את 2 כשורש ונקבל כי [math]\displaystyle{ p(x)=(x-2)^2(x^2-2x+2) }[/math].
    • לכן השורשים של הפולינום האופייני הם 2 מריבוי 2, ו[math]\displaystyle{ 1\pm i }[/math] מריבוי 1.
    • לכן הפתרון הכללי הוא [math]\displaystyle{ y=c_1e^{2x}+c_2xe^{2x}+c_3e^xsin(x)+c_4e^xcos(x) }[/math].


  • דוגמא: מצאו את הפתרון של המד"ר [math]\displaystyle{ y'''+3y''+3y'+y=0 }[/math] המקיים [math]\displaystyle{ y(0)=0,y'(0)=1,y''(0)=0 }[/math].
    • הפולינום האופייני הוא [math]\displaystyle{ p(x)=(x+1)^3 }[/math].
    • הפתרון הכללי הוא [math]\displaystyle{ y=c_1e^-x+c_2xe^-x+c_3x^2e^-x }[/math].
    • כעת נמצא את הקבועים:
      • [math]\displaystyle{ y(0)=c_1=0 }[/math].
      • [math]\displaystyle{ y'(0)=c_2=1 }[/math].
      • [math]\displaystyle{ y''(0)=2+2c_3=0 }[/math] ולכן [math]\displaystyle{ c_3=-1 }[/math].
    • סה"כ הפתרון הוא [math]\displaystyle{ y=e^x(x-x^2) }[/math].

הרצאה 7 מציאת פתרון פרטי למד"ר לינארית לא הומוגנית

  • כבר ראינו שעל מנת למצוא פתרון כללי למד"ר לינארית לא הומוגנית, עלינו למצוא פתרון כללי למד"ר ההומוגנית (למדנו כיצד בהרצאה קודמת), ופתרון פרטי כלשהו למד"ר הלא הומוגנית.
  • נלמד כיצד למצוא פתרון פרטי.


שיטת הניחוש עבור מד"ר עם מקדמים קבועים

  • תהי מד"ר מהצורה [math]\displaystyle{ y^{(n)}+a_{n-1}y^{(n-1)}+...+a_1y'+a_0y=f(x) }[/math].


  • אם [math]\displaystyle{ f(x)=P_m(x) }[/math] פולינום מדרגה m:
    • [math]\displaystyle{ 0 }[/math] אינו שורש של הפולינום האופייני, ננחש [math]\displaystyle{ y_p=Q_m(x) }[/math] פולינום מדרגה m.
    • אם [math]\displaystyle{ 0 }[/math] שורש של הפולינום האופייני מדרגה k ננחש [math]\displaystyle{ y_p=x^kQ_m(x) }[/math].


  • אם [math]\displaystyle{ f(x)=e^{ax}P_m(x) }[/math]:
    • אם [math]\displaystyle{ a }[/math] אינו שורש של הפולינום האופייני ננחש [math]\displaystyle{ y_p=e^{ax}Q_m(x) }[/math].
    • אם [math]\displaystyle{ a }[/math] שורש של הפולינום האופייני מדרגה k ננחש [math]\displaystyle{ y_p=x^ke^{ax}Q_m(x) }[/math].


  • אם [math]\displaystyle{ f(x)=e^{ax}sin(bx)P_m(x) }[/math] או [math]\displaystyle{ f(x)=e^{ax}cos(bx)P_m(x) }[/math]:
    • אם [math]\displaystyle{ a\pm bi }[/math] אינם שורשים של הפולינום האופייני ננחש [math]\displaystyle{ y_p=e^{ax}sin(bx)Q_m(x) + e^{ax}cos(bx)R_m(x) }[/math] (כאשר [math]\displaystyle{ R_m(x),Q_m(x) }[/math] פולינומים מסדר m).
    • אם [math]\displaystyle{ a\pm bi }[/math] שורשים של הפולינום האופייני מריבוי k כל אחד, ננחש [math]\displaystyle{ y_p=x^ke^{ax}sin(bx)Q_m(x) + x^ke^{ax}cos(bx)R_m(x) }[/math].


  • דוגמאות:
    • עבור [math]\displaystyle{ y''+2y'+y=x^2 }[/math] הפולינום האופייני הוא [math]\displaystyle{ p(x)=(x+1)^2 }[/math] ננחש את הפתרון [math]\displaystyle{ y_p=ax^2+bx+c }[/math].
    • עבור [math]\displaystyle{ y''+2y'+y=e^{x} }[/math] כעת [math]\displaystyle{ 1 }[/math] אינו שורש של הפולינום האופייני, ולכן ננחש [math]\displaystyle{ y_p=ae^x }[/math]. (שימו לב שהפולינום הוא בעצם מדרגה 0.)
    • עבור [math]\displaystyle{ y''+2y'+y=xe^{-x} }[/math] כעת [math]\displaystyle{ -1 }[/math] הוא שורש מריבוי 2 ולכן ננחש את הפתרון [math]\displaystyle{ y_p=x^2e^{-x}(a+bx) }[/math].
    • עבור [math]\displaystyle{ y''+y=sin(x) }[/math] הפולינום האופייני הוא [math]\displaystyle{ p(x)=x^2+1 }[/math] השורש [math]\displaystyle{ 0+i }[/math] מופיע מריבוי 1 ולכן ננחש [math]\displaystyle{ y_p=axsin(x)+bxcos(x) }[/math].


  • לאחר הניחוש, נמצא את הקבועים ע"י הצבה. נחשב עבור הדוגמא הראשונה:
    • המד"ר [math]\displaystyle{ y''+2y'+y=x^2 }[/math], הניחוש [math]\displaystyle{ y_p=ax^2+bx+c }[/math].
      • [math]\displaystyle{ y_p'=2ax+b }[/math].
      • [math]\displaystyle{ y_p''=2a }[/math].
      • נציב [math]\displaystyle{ 2a+4ax+2b+ax^2+bx+c=x^2 }[/math].
      • נבצע השוואת מקדמים:
        • [math]\displaystyle{ a=1 }[/math].
        • [math]\displaystyle{ 4a+b=0 }[/math].
        • [math]\displaystyle{ 2a+2b+c=0 }[/math].
    • לכן הפתרון הפרטי הוא [math]\displaystyle{ y_p=x^2-4x+6 }[/math].
    • סה"כ הפתרון הכללי הוא [math]\displaystyle{ c_1e^{-x}+c_2xe^{-x}+x^2-4x+6 }[/math].


וריאצית מקדמים יחד עם שיטת קרמר למד"ר לינארית

  • תהי מד"ר לינארית (לאו דווקא עם מקדמים קבועים) מהצורה [math]\displaystyle{ y^{(n)}+a_{n-1}(x)y^{(n-1)}+...+a_1(x)y'+a_0(x)y=f(x) }[/math].
  • יהיו [math]\displaystyle{ y_1,...,y_n }[/math] פתרונות בת"ל למד"ר ההומוגנית.
  • ננחש כי קיים פתרון פרטי מהצורה [math]\displaystyle{ y_p=c_1(x)y_1+...+c_n(x)y_n }[/math].


  • טענה - עבור פונקציות [math]\displaystyle{ c_1(x),...,c_n(x) }[/math] המקיימות את מערכת המשוואות [math]\displaystyle{ \begin{cases} c_1'y_1+...+c_n'y_n=0 \\ c_1'y_1'+...+c_n'y_n'=0 \\ \vdots \\ c_1'y_1^{(n-2)} +...+c_n'y_n^{(n-2)}=0\\ c_1'y_1^{(n-1)}+...+c_n'y_n^{(n-1)}=f(x) \end{cases} }[/math] מתקיים כי [math]\displaystyle{ y_p=c_1(x)y_1+...+c_n(x)y_n }[/math] הוא פתרון פרטי של המד"ר.
    • הוכחה:
    • עבור פשטות הרישום, נבצע את ההוכחה עבור n=3, אמנם ההוכחה הכללית דומה לחלוטין.
    • [math]\displaystyle{ y_p'=c_1'y_1+c_2'y_2+c_3'y_3+c_1y_1'+c_2y_2'+c_3y_3'=c_1y_1'+c_2y_2'+c_3y_3' }[/math]. (לפי המשוואה הראשונה.)
    • באופן דומה [math]\displaystyle{ y_p''=c_1y_1''+c_2y_2''+c_3y_3'' }[/math]. (לפי המשוואה השנייה.)
    • כעת [math]\displaystyle{ y_p'''=f(x)+c_1y_1'''+c_2y_2'''+c_3y_3''' }[/math], לפי המשוואה האחרונה.
    • נציב במד"ר המקורית:
      • [math]\displaystyle{ y_p'''+a_2(x)y_p''+a_1(x)y_p'+a_0(x)y_p=f(x)+ }[/math]
      • [math]\displaystyle{ +c_1(y_1'''+a_2(x)y_1''+a_1(x)y_1'+a_0(x)y_1)+ }[/math]
      • [math]\displaystyle{ +c_2(y_2'''+a_2(x)y_2''+a_1(x)y_2'+a_0(x)y_2)+ }[/math]
      • [math]\displaystyle{ +c_3(y_3'''+a_2(x)y_3''+a_1(x)y_3'+a_0(x)y_3) }[/math]
    • כיוון ש[math]\displaystyle{ y_1,y_2,y_3 }[/math] פתרונות למד"ר ההומוגנית הביטויים בסוגריים מתאפסים וסה"כ קיבלנו כי אכן [math]\displaystyle{ y_p'''+a_2(x)y_p''+a_1(x)y_p'+a_0(x)y_p=f(x) }[/math].


  • כלומר, על מנת למצוא פתרון פרטי, עלינו למצוא פתרון למערכת המשוואות הבאה:
  • [math]\displaystyle{ \begin{pmatrix} y_1 & \cdots & y_n \\ \vdots & & \vdots \\ y_1^{(n-2)} & \cdots & y_n^{(n-2)}\\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} c_1' \\ \vdots \\ c_n' \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ f(x) \end{pmatrix} }[/math]
  • אבל דטרמיננטת מטריצת המקדמים היא בדיוק הוורונסקיאן!
  • כיוון ש[math]\displaystyle{ y_1,...,y_n }[/math] בסיס למרחב הפתרונות, מטריצת המקדמים הפיכה לכל [math]\displaystyle{ x }[/math] ולכן קיים פתרון (יחיד) למערכת.
  • כיצד נמצא את הפתרון? שיטת קרמר.
  • לאחר שנמצא את הערכים של [math]\displaystyle{ c_k'(x) }[/math] נבצע אינטגרציה ונמצא סה"כ את הפתרון הפרטי.


  • דוגמא - מצאו פתרון כללי למד"ר [math]\displaystyle{ y''+y=sin^2(x) }[/math].
    • פתרון כללי למד"ר ההומוגנית הוא [math]\displaystyle{ c_1cos(x)+c_2sin(x) }[/math].
    • כעת עלינו למצא פתרון פרטי [math]\displaystyle{ y_p=c_1(x)cos(x)+c_2(x)sin(x) }[/math].
    • עלינו למצוא פתרון למערכת [math]\displaystyle{ \begin{pmatrix} cos(x) & sin(x) \\ -sin(x) & cos(x) \end{pmatrix} \begin{pmatrix} c_1'(x) \\ c_2'(x) \end{pmatrix} = \begin{pmatrix} 0 \\ sin^2(x) \end{pmatrix} }[/math]
    • לכן לפי שיטת קרמר
      • [math]\displaystyle{ c_1'(x)=\frac{ \left| \begin{pmatrix} 0 & sin(x) \\ sin^2(x) & cos(x) \end{pmatrix} \right| } { \left| \begin{pmatrix} cos(x) & sin(x) \\ -sin(x) & cos(x) \end{pmatrix} \right| }=-sin^3(x) }[/math]
      • [math]\displaystyle{ c_2'(x)=\frac{ \left| \begin{pmatrix} cos(x) & 0 \\ -sin(x) & sin^2(x) \end{pmatrix} \right| } { \left| \begin{pmatrix} cos(x) & sin(x) \\ -sin(x) & cos(x) \end{pmatrix} \right| }=sin^(x)cos(x) }[/math]
      • לכן [math]\displaystyle{ c_1(x)=\int (-sin^3(x))dx = \int (1-cos^2(x))(-sin(x))dx=\{t=cos(x)\}=\int (1-t^2)dt=t-\frac{t^3}{3}=cos(x)-\frac{cos^3(x)}{3} }[/math]
      • [math]\displaystyle{ c_2(x)=\int sin^2(x)cos(x)dx =\{t=sin(x)\}= \int t^2 dt = \frac{t^3}{3} = \frac{sin^3(x)}{3} }[/math]
    • סה"כ הפתרון הפרטי הוא [math]\displaystyle{ y_p=(cos(x)-\frac{cos^3(x)}{3})cos(x) + \frac{sin^3(x)}{3}sin(x) }[/math].


  • דוגמא:
  • שימו לב שיכלנו לפתור את השאלה הקודמת בדרך אחרת, קצרה יותר, עם טריק.
  • מתקיים כי [math]\displaystyle{ sin^2(x)=\frac{1}{2} - \frac{1}{2}cos(2x) }[/math].
  • נמצא פתרון פרטי [math]\displaystyle{ y_{p_1} }[/math] למד"ר [math]\displaystyle{ y''+y=\frac{1}{2} }[/math] בשיטת הניחוש.
  • נמצא פתרון פרטי [math]\displaystyle{ y_{p_2} }[/math] למד"ר [math]\displaystyle{ y''+y=-\frac{1}{2}cos(2x) }[/math] בשיטת הניחוש.
  • לכן [math]\displaystyle{ y_p=y_{p_1}+y_{p_2} }[/math] הוא פתרון פרטי למד"ר [math]\displaystyle{ y''+y=sin^2(x) }[/math] מתוך לינאריות.