שיחה:88-132 סמסטר א' תשעא

מתוך Math-Wiki

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון


שאלות

שאלה על פתרון שאלה

תרגיל 10 (http://www.math-wiki.com/images/d/db/10Infi1Targil10Sol.pdf) שאלה 2- כתבתם שקיים M כך ש fx<M>-אמ. אבל אז בפונקציה g לקחתם את הערך 1/M+1 - והרי איך אפשר לדעת בוודאות שהפונקציה רציפה בו (צריך שהיא תהיה רציפה כדי להשתמש במשפט ערך הביניים)? אם f חסומה בין שליש למינוס שליש, אז 1/M+1 הוא 4, והפונקציה מ2 ל4 לא בהכרח רציפה!

אפשר לקחת M גדול כרצוננו, הרי זה חסם. אם היא חסומה על ידי שליש, היא בוודאי גם חסומה על ידי אחד --ארז שיינר 13:58, 29 בינואר 2011 (IST)
אוקי.

עזרה בשאלה ממבחן

תהי {an} כך שלכל K טבעי [math]\displaystyle{ a_{2k+1}-a_{2k-1}\lt 0 \and a_{2k+2}-a_{2k}\gt 0 }[/math], וגם ש [math]\displaystyle{ lim_{n-\gt infinity}a_{n+1}-a_n=0 }[/math]. הוכח שהסדרה מתכנסת. תודה!

יש תת סדרה מונוטונית עולה, ותת סדרה מונוטונית יורדת. אתה צריך להראות ששתיהן חסומות ולכן מתכנסות, ואחר כך שבהכרח לאותו הגבול. --ארז שיינר 13:55, 29 בינואר 2011 (IST)
הבנתי אותך. רק לא הצלחתי להוכיח שהתת סדרות חסומות. אפשר עזרה?
הסדרה העולה חייבת להיות קטנה מהסדרה היורדת. אם הן היו עוברות אחת את השנייה, ההפרש בין שני איברים עוקבים לא היה יכול לשאוף לאפס. --ארז שיינר 17:06, 29 בינואר 2011 (IST)
אוקי..

עזרה בשאלה נוספת ממבחן

יהי n טבעי, נניח f מוגדרת וגזירה n פעמים בסביבת 0, ו f0=f'0=f0=..=f^(n-1)(0)=0 (נגזרות ב0)., f^(n)(0)=5. חשב [math]\displaystyle{ lim_{x-\gt 0}(fx/(sin2x)^n) }[/math]. תודה מראש

אני מניח שלקחת את השאלה הזו מתוך מבחן של ד"ר הורוביץ (עשיתי אותה לפני כעשר דקות). שים לב לרמז שמופיעה מתחתיה (כאשר x->0 יתקיים ש sinx/x->1), היעזר בו למציאת פונקציה שתהיה במכנה שתהיה נוחה לגזירה, והשתמש בכלל לופיטל n (או n-1, אני לא בטוח) פעמים. מקווה שעזרתי, גל א.
לא הבנתי איך אפשר להשתמש ברמז כדי לפתור את התרגיל- גזרתי את הפונקציה עם לופיטל N פעמים ואף פעם לא היה "x" - רק סינוס, קוסינוס ודברים שקשורים לn. לא הבנתי מה זה אומר למה התכוונת כשאמרת להיעזר בו כדי למצוא פונקציה במכנה נוחה לגזירה.

רציפות במ"ש

מישהו יכול לעזור לי למצוא שתי סדרות כדי להפריך רציפות במ"ש של פונקציות xsinx xcosx?

[math]\displaystyle{ f(x)=xsinx }[/math] ו[math]\displaystyle{ x_n=2\pi k, y_n=2\pi k + \frac{1}{k} }[/math]. אזי [math]\displaystyle{ f(y_n)-f(x_n)=2\pi k sin(\frac{1}{k}) + \frac{1}{k}sin(\frac{1}{k}) \rightarrow 2\pi + 0 \neq 0 }[/math] --ארז שיינר 17:11, 29 בינואר 2011 (IST)

קירוב ליניארי

היי ארז,

באחד המבחנים ביקשו להגדיר את הקירוב הליניארי ולהסביר את חשיבותו....

איך מגדירים זאת בצורה מדוייקת ומה ההסבר הנדרש פה?

תודה!

אני לא בטוח למה הוא מכוון בשאלה, עניתי על זה בתרגיל החזרה. מגדירים את זה בצורה מדוייקת (יש את הנוסחא בדפי התרגיל) ולדעתי ההסבר הוא שניתן כך להעריך פונקציות מבלי להיות מסוגלים לחשב אותן במפורש כאשר אנו כן יודעים לחשב את הפונקציה ואת הנגזרת קרוב לערך המבוקש. --ארז שיינר 16:56, 29 בינואר 2011 (IST)

עזרה בפתרון שאלה

שאלתי את השאלה קודם, אך אני לא בטוח שהפתרון שנתנו לי נכון, לכן אבקש, ארז, אם תוכל, לבדוק שהפתרון שנתנו אכן נכון. הנה השאלה [[1]]. תודה!

לא קראתי את הפתרון הזה, אבל פתרתי את זה בכיתה בשיעור החזרה. אם a_n אינה קושי, אז היא אינה מתכנסת ולכן הגבול החלקי העליון והתחתון שלה שונים, לכן יש לה תת סדרה ששואפת לעליון ותת סדרה ששואפת לתחתון. ניתן לכן לבנות תת סדרה אחרת כך שאיברים הזוגיים שלה יהיו מהראשונה והאיבריים האי זוגיים שלה יהיו מהשנייה. עבור תת סדרה זו, [math]\displaystyle{ \lim |a_{n_{k+1}}-a_{n_k}| = \limsup - \liminf \neq 0 }[/math] בסתירה. --ארז שיינר 16:52, 29 בינואר 2011 (IST)
תודה.

מישפט היינה בורל

מישהוא יכול ליכתוב אותו בבקשה

"יהי [math]\displaystyle{ K }[/math] קטע סגור, ויהיו [math]\displaystyle{ \{I_a\}_{a\ in\ A} }[/math] קטעים פתוחים ב-[math]\displaystyle{ \R }[/math] כך ש-[math]\displaystyle{ K }[/math] מוכל ממש באיחוד של כולם. אזי קיים מספר סופי של קטעים כאלו כך ש-[math]\displaystyle{ K }[/math] מוכל ממש בתוך האיחוד שלהם". (אני לא הייתי בהרצאה הזו, זה מתוך מחברת שצילמתי ממישהו). מקווה שעזרתי גל א.

תודה פשוט בוויקפדיה זה רשום בצורה קצת פחות פורמלית

אולי יש לכה במיקרה גם את המישפט של בולצאנו ויירשטראס לקבוצות