שינויים

אנליזה מתקדמת למורים תרגול 6

נוספו 282 בתים, 12:24, 31 בדצמבר 2019
/* אקסופננט */
=====פתרון=====
כן! נתחיל מדוגמא, ואז נבין את הפתרון הכללי. נחפש <math>x,y\in \mathbb{R}</math> כך ש <math>e^{x+yi}=e^x(\cos y+i\sin y)=-e</math>.
ראשית, כדי שהתוצאה תהיה ממשית דרוש <math>\sin y=0</math>, ולכן <math>y=0+\pi k</math>. כעת נקבל <math>\cos y\in \{-1,0,1\}</math>, וכיון שאנחנו רוצים לקבל מספר שלילי נרצה <math>\cos y=-1</math>, ולכן ניקח <math>y=\pi+2\pi k</math>.
מה שקיבלנו עד כה זה <math>e^{x+\pi i}=-e^x</math>, ולכן אם ניקח <math>x=\ln e=1</math> נקבל <math>e^{1+\pi i}=-e</math> כדרוש.
הוכיחו: <math>\sin(z+w)=\sin z\cos w+\cos z\sin w</math>.
=====פתרון=====
נפתח את צד ימין:
<math>=\frac{1}{4i}(e^{iz}e^{iw}+e^{iz}e^{-iw}-e^{-iz}e^{iw}-e^{-iz}e^{-iw}+e^{iz}e^{iw}-e^{iz}e^{-iw}+e^{-iz}e^{iw}-e^{-iz}e^{-iw})=\frac{1}{4i}(2e^{iz}e^{iw}-2e^{-iz}e^{-iw})=\frac{e^{i(z+w)}-e^{-i(z+w)}}{2i}=\sin (z+w)</math>
 
====תרגיל====
חשבו נגזרת: <math>(\cos z)'</math>
 
=====פתרון=====
נחשב: <math>(\cos z)'=\left( \frac{e^{iz}+e^{-iz}}{2} \right)'=\frac{ie^{iz}+(-i)e^{-iz}}{2}=\frac{i\left( e^{iz}-e^{-iz} \right) }{2}=\frac{-e^{iz}+e^{-iz}}{2i}=-\sin z</math>
==לוגריתם==
546
עריכות