שינויים

אנליזת פורייה - ארז שיינר

נוספו 1,625 בתים, 10:45, 7 במרץ 2019
/* הרצאה 4 - התכנסות במ"ש ושיוויון פרסבל */
==הרצאה 4 - התכנסות במ"ש ושיוויון פרסבל==
===תנאי להתכנסות במ"ש של טור פורייה===
*תהי <math>f</math> רציפה בקטע <math>[-\pi,\pi]</math> המקיימת <math>f(-\pi)=f(\pi)</math>, כך ש <math>f'</math> רציפה למקוטעין.
*אזי טור הפורייה של <math>f</math> מתכנס אליה במ"ש בכל הממשיים.
:<math>\left|\frac{a_0}{2}+\sum_{n=1}^\infty a_n\cos(nx)+b_n\sin(nx)\right|\leq \frac{|a_0|}{2} + \sum_{n=1}^\infty |a_n|+|b_n|</math>
*לפי מבחן ה-M של ויירשטראס, מספיק להוכיח שטור המספרים מימין מתכנס על מנת להסיק שטור הפורייה מתכנס במ"ש.
 
 
*נסמן את מקדמי פורייה של הנגזרת ב<math>\alpha_n,\beta_n</math>.
*כבר חישבנו ש:
**<math>\alpha_0=0</math>
**<math>\alpha_n=nb_n</math>
**<math>\beta_n=-na_n</math>
*לכן ביחד נקבל כי <math>\sqrt{|a_n|^2+|b_n|^2}=\frac{1}{n}\sqrt{|\alpha_n|^2+|\beta_n|^2}</math>
*לפי אי שיוויון קושי שוורץ, נקבל כי לכל n מתקיים:
:<math>\sum_{n=1}^N \frac{\sqrt{|\alpha_n|^2+|\beta_n|^2}}{n} \leq \sqrt{\sum_{n=1}^N\frac{1}{n^2}}\sqrt{\sum_{n=1}^N |\alpha_n|^2+|\beta_n|^2}</math>
*לפי אי שיוויון בסל, אנו יודעים כי הטור <math>\sum_{n=1}^\infty |\alpha_n|^2+|\beta_n|^2</math> מתכנס, כיוון שמדובר במקדמי פורייה של <math>f'\in E</math>.
**(זכרו שמותר להניח כי <math>f'\in E</math> על ידי שינוי מספר סופי של נקודות שלא משפיעות על חישוב מקדמי הפורייה.)
*לכן <math>\sqrt{\sum_{n=1}^N\frac{1}{n^2}}\sqrt{\sum_{n=1}^N |\alpha_n|^2+|\beta_n|^2}</math> חסומות כסדרות סכומים חלקיים של טורים מתכנסים.
*לכן סה"כ <math>\sum_{n=1}^N \frac{\sqrt{|\alpha_n|^2+|\beta_n|^2}}{n}</math> חסומה, ולכן הטור האינסופי המתאים לה מתכנס.
 
 
*סה"כ קיבלנו כי <math>\sum_{n=1}^\infty \sqrt{|a_n|^2+|b_n|^2}</math> מתכנס.
*לכן בוודאי גם הטורים הקטנים יותר <math>\sum_{n=1}^\infty |a_n|</math> ו<math>\sum_{n=1}^\infty |b_n|</math> מתכנסים, כפי שרצינו.