שינויים

אנליזת פורייה - ארז שיינר

נוספו 814 בתים, 08:22, 11 במרץ 2019
/* תנאי להתכנסות במ"ש של טור פורייה */
*סה"כ קיבלנו כי <math>\sum_{n=1}^\infty \sqrt{|a_n|^2+|b_n|^2}</math> מתכנס.
*לכן בוודאי גם הטורים הקטנים יותר <math>\sum_{n=1}^\infty |a_n|</math> ו<math>\sum_{n=1}^\infty |b_n|</math> מתכנסים, כפי שרצינו.
 
 
===שיוויון פרסבל===
*נביט במערכת האורתונורמלית <math>\{\frac{1}{\sqrt{2}},\cos(x),\sin(x),\cos(2x),\sin(2x),...\}\subseteq E</math>
*ידוע לנו כי <math>a_0=\langle f,1\rangle</math>, ולכן <math>\frac{a_0}{\sqrt{2}}=\langle f,\frac{1}{\sqrt{2}}\rangle</math>
 
 
*תהי <math>f\in E</math>. לפי אי שיוויון בסל ידוע לנו כי:
:<math>\frac{|a_0|^2}{2}+\sum_{n=1}^\infty |a_n|^2+|b_n|^2 \leq ||f||^2 = \langle f,f\rangle = \frac{1}{\pi}\int_{-\pi}^{\pi} |f(x)|^2dx</math>
*משפט שיוויון פרסבל אומר שבעצם מתקיים:
:<math>\frac{1}{\pi}\int_{-\pi}^{\pi} |f(x)|^2dx=\frac{|a_0|^2}{2}+\sum_{n=1}^\infty |a_n|^2+|b_n|^2 </math>
 
 
====הוכחת שיוויון פרסבל כאשר טור הפורייה מתכנס במ"ש====