שינויים

הלמה של צורן

נוספו 25 בתים, 17:32, 17 במאי 2015
/* הגרסה החזקה של הלמה של צורן */
'''הלמה של צורן''' (גרסה חזקה). תהי X קבוצה לא ריקה, עם התכונה שלכל תת-קבוצה סדורה היטב (ולא ריקה) ב-X יש חסם מלעיל. אז יש ב-X איבר מקסימלי.
גרסה זו נבדלת מן הקודמת בכך שכעת אנו מניחים רק שיש חסם מלעיל רק לשרשראות שהן סדורות היטב, ולא בהכרח לכל השרשראות.
שאר הסעיף מוקדש ל'''הוכחת הלמה''' (על-פי Pierre-Yves Gaillard). ההוכחה בדרך השלילה. נניח שאין ל-X איבר מקסימלי.
'''טענה 6'''. <math>\ U \in \Omega</math>. עלינו להראות ש-U מדוייקת, ולאור טענה 5, די להראות שלכל <math>\ u \in U</math> מתקיים <math>\ p(U_{<u}) = u</math>. אבל לפי הגדרת U, יש <math>\ W \in \Omega</math> כך ש-<math>\ u \in W</math>, ואז <math>\ U_{<u} \subset W</math> והטענה נובעת מכך ש-W מדוייקת.
מכיוון ש-U סדורה היטב, יש איבר <math>\ p(U) \in X</math>. כצעד אחרון בהוכחה, נראה שגם <math>\ \bar{U} = U\cup\{p(U)\} \in \Omega</math>. ברור ש-<math>\ \bar{U}</math> היא שרשרת. אם <math>\ u \in \bar{U}</math>, יש שתי אפשרויות: אם <math>\ u = p(U)</math> אז <math>\ \bar{U}_{<u} = U</math> וממילא <math>\ p(U) = u</math>; ואחרת <math>\ p(\bar{U}_{<u}) = p(U_{<u}) = u</math> לפי טענה 6. אבל מהגדרת U נובע עכשיו ש-<math>\ \bar{U} \subseteq U</math>, וזו כמובן סתירה (משום ש-שלפי הנחת השלילה <math>\ U < p(U)</math>).
== שימושים ==
19
עריכות