מד"ר - משוואות דיפרנציאליות רגילות - ארז שיינר

מתוך Math-Wiki
גרסה מ־11:17, 4 במרץ 2018 מאת ארז שיינר (שיחה | תרומות) (הרצאה 1 הקדמה)

קפיצה אל: ניווט, חיפוש

הרצאה 1 הקדמה

  • משוואה דיפרנציאלית מכילה את המשתנה, הפונקציה ונגזרותיה.
  • בחקירת פונקציות, במציאת תחומי עלייה וירידה, אנו פותרים את המשוואה f'(x)=0. האם זו משוואה דיפרנציאלית?
  • לא, כיוון שבמשוואות דיפרנציאלית אנו מחפשים פונקציה שמקיימת את המשוואה לכל ערך של המשתנה.
  • כאן הפונקציה נתונה, ואנו מחפשים ערך של המשתנה שמקיים את המשוואה.


  • נפילה חופשית.
    • גוף הנופל חופשית נופל בתאוצה שבקירוב היא קבועה g=9.82.
    • נסמן בy(t) את הגובה של הגוף (כאשר הכיוון החיובי הוא לכיוון כדור הארץ)
    • v(t)=y'(t) היא המהירות
    • a(t)=v'(t)=y''(t) היא התאוצה.
    • לכן על מנת לדעת את מיקומו של הגוף בכל נקודה בזמן, עלינו לפתור את המשוואה a(t)=g, הרי התאוצה קבועה.
    • y''(t)=g
    • לכן y'(t)=gt+c_1
    • לכן y(t)=\frac{g}{2}t^2+c_1t+c_2
  • כיצד נחשב את הקבועים? לפי תנאי ההתחלה.
    • נסמן את הגובה ההתחלתי בתור 0 (נזכור כי הכיוון החיובי הוא לכיוון כדור הארץ). ולכן y(0)=0 ולכן c_2=0
    • נניח כי המהירות ההתחלתית גם היא הייתה 0 ולכן y'(0)=0 ולכן גם c_2=0.


  • ריבית דריבית.
  • נניח שסכום הכסף בבנק לאורך זמן מתואר על ידי הפונקציה y(t).
  • נניח שאנו מרוויחים תשואה של 2 אחוז בשנה, לכן לאחר שנה יתקיים כי y(1)=y(0)+0.02\cdot y(0).
  • אבל מה היה קורה אילו הבנק היה משלם את הריבית פעם בחצי שנה?
    • בחצי השנה הראשונה נקבל מחצית מהריבית y(\frac{1}{2})=y(0)+\frac{1}{2}\cdot 0.02\cdot y(0)
    • ובחצי השנה השנייה נקבל מחצית מהריבית, אך סכום הקרן שלנו כבר גדל y(1)=y(\frac{1}{2})+\frac{1}{2}\cdot 0.02 \cdot y(\frac{1}{2})
    • סה"כ y(1)=(1.01)^2\cdot y(0)
  • זה גדול יותר מהריבית השנתית, כיוון שצברנו ריבית על הקרן וגם על הריבית החצי שנתית.
  • האם יש דרך להפוך את התהליך לרציף?
  • כלומר, בהנתן שתי נקודות זמן קרובות אנו מעוניינים לקבל את הריבית היחסית על הזמן שעבר:
    • y(t_2)=y(t_1)+(t_2-t_1)\cdot 0.02 \cdot y(t_1)
    • נעביר אגף ונחלק \frac{y(t_2)-y(t_1)}{t_2-t_2}=0.02\cdot y(t_1)