שינויים

מדר קיץ תשעב/סיכומים/הרצאות/31.7.12

אין שינוי בגודל, 14:09, 6 באוגוסט 2012
/* מד״ר לינארית מסוג I */
אם <math>\begin{vmatrix}a_1&b_1\\a&b\end{vmatrix}=0</math> אז יש <math>\lambda</math> שעבורה <math>a_1=\lambda a\ \and\ b_1=\lambda b</math> ואז <math>y'=f\left(\frac{\lambda(ax+by)+c_1}{(ax+by)+c}\right)</math>. נציב <math>z=ax+by</math> ונפתור כפי שאנו כבר יודעים.
== מד״ר לינארית מסוג מסדר I ==
אלה מד״ר מהצורה <math>y'+p(x)y=q(x)</math> כאשר <math>p,q</math> לאו דווקא לינאריות. היא תקרא לינארית־הומוגנית אם <math>q(x)\equiv0</math>, ובמקרה זה נקבל:{{left|<math>\begin{align}&\int\frac{\mathrm dy}y=-\int p(x)\mathrm dx\\\implies&y=c\mathrm e^{-\int p(x)\mathrm dx}\end{align}</math>}}
במקרה הלא הומוגני נוכל להכפיל את אגפי המשוואה ב־<math>\mathrm e^{\int p(x)\mathrm dx+c_1}</math> ונקבל <math>y'\mathrm e^{\int p(x)\mathrm dx+c_1}+p(x)y\mathrm e^{\int p(x)\mathrm dx+c_1}=\left(y\mathrm e^{\int p(x)\mathrm dx+c_1}\right)'=q(x)\mathrm e^{\int p(x)\mathrm dx+c_1}</math>. לכן {{left|<math>\begin{align}y&=\mathrm e^{-\int p(x)\mathrm dx-c_1}\left(c_2+\int q(x)\mathrm e^{\int p(x)\mathrm dx+c_1}\mathrm dx\right)\\&=\mathrm e^{-\int p(x)\mathrm dx}\left(c_2\mathrm e^{-c_1}+\mathrm e^{-c_1}\mathrm e^{c_1}\int q(x)\mathrm e^{\int p(x)\mathrm dx}\mathrm dx\right)\\&=\mathrm e^{-\int p(x)\mathrm dx}\left(c+\int q(x)\mathrm e^{\int p(x)\mathrm dx}\mathrm dx\right)\end{align}</math>}}