שינויים

משתמש:אור שחף/133 - הרצאה/27.2.11

הוסרו 157 בתים, 20:31, 29 ביולי 2012
#<math>S(f+cg,P,P')=\sum_{k=1}^n (f+cg)(c_k)\Delta x_k=\sum_{k=1}^n f(c_k)\Delta x_k+c\sum_{k=1}^n g(c_k)\Delta x_k</math>. נשאיף <math>\lambda(P)\to0</math>. כיוון שנתון ש-f ו-g אינטגרביליות אגף ימין שואף לגבול, ז"א <math>\lim_{\lambda(P)\to0} S(f+cg,P,P')=\int\limits_a^b f+c\int\limits_a^b g</math>. עצם קיום הגבול אומר ש-<math>f+cg</math> אינטגרבילית ולפי ערך הגבול נסיק <math>\int\limits_a^b (f+cg)=\int\limits_a^b f+c\int\limits_a^b g</math>. {{משל}}
<span id="continue"><!--נא לא למחוק span זה--></span>{{הערההמשך סיכום|את ההמשך עשינו ב[[משתמש:אור שחף/133 - הרצאה/תאריך=1.3.11|הרצאה שאחריה]]:}}<ol start="2">
<li>נתבונן בסכום רימן כלשהו עבור g: <math>\sum_{k=1}^n g(c_k)\Delta x_k</math>. לפי הנתון הוא קטן או שווה ל- <math>\sum_{k=1}^n f(c_k)\Delta x_k</math>. נשאיף <math>\lambda(P)\to0</math>. סכומים אלה שואפים לאינטגרלים של f ו-g ונסיק <math>\int\limits_a^b f\ge\int\limits_a^b g</math>. {{משל}}</li>
<li>נעיר ש-<math>\Omega</math> היא בעצם <math>\Omega(f)=\sup\{|f(x)-f(y)|:\ x,y\in[a,b]\}</math>. כזכור, אי שיוויון המשולש גורר ש-<math>\Big||f(x)|-|f(y)|\Big|\le|f(x)-f(y)|</math>. לכן <math>\Omega(|f|)=\sup_{x,y\in[a,b]}\Big||f(x)|-|f(y)|\Big|\le\sup_{x,y\in[a,b]}|f(x)-f(y)|=\Omega(f)</math>. כעת תהי P חלוקה כלשהי של <math>[a,b]</math> ואז <math>\overline S(f,P)-\underline S(f,P)=\sum_{k=1}^n (M_k(f)-m_k(f))\Delta x_k</math>. נעיר שלכל f, <math>M_k(f)-m_k(f)</math> היא התנודה של f בקטע <math>[x_{k-1},x_k]</math> ולפי מה שהוכחנו זה גדול או שווה לתנודה של |f| באותו קטע: {{left|<math>\begin{align}\overline S(f,P)-\underline S(f,P)&=\sum_{k=1}^n \Big(M_k(f)-m_k(f)\Big)\Delta x_k\\&\ge\sum_{k=1}^n \Big(M_k(|f|)-m_k(|f|)\Big)\Delta x_k\\&=\overline S(|f|,P)-\underline S(|f|,P)\end{align}</math>}}