שינויים

משתמש:אור שחף/133 - הרצאה/27.3.11

נוספו 50 בתים, 17:24, 26 באוקטובר 2011
/* דוגמה */
===דוגמה===
נחשב את שטח המעטפת (השווה לשטח הפנים) של כדור בעל רדיוס r: מתקיים <math>f(x)=\sqrt{r^2-x^2}</math> ולכן <math>f'(x)=-\frac x\sqrt{r^2-x^2}</math>. השטח הוא {{left|<math>\begin{align}\int\limits_{-r}^r 2\pi f(x)\sqrt{1+f'(x)^2}\mathrm dx&=\int\limits_{-r}^r2\pi\sqrt{r^2-x^2}\sqrt{1+\frac{x^2}{r^2-x^2}}\mathrm dx\\&=\int\limits_{-r}^r2\pi\sqrt{r^2-x^2+x^2}\mathrm dx\\&=2\pi[rx]_{x=-r}^r\\&=4\pi r^2\end{align}</math>}}{{משל}}
[[קובץ:היקף מעגל הוא נגזרת השטח.png|ימין|200px]]נשים לב כי שטח עיגול הוא <math>\pi r^2</math> והיקפו <math>\frac{\mathrm d}{\mathrm dr}\pi r^2=2\pi r</math> כמו כן נפח כדור הוא <math>\frac43\pi r^3</math> ושטחו <math>\frac{\mathrm d}{\mathrm dr}\frac43\pi r^3=4\pi r^2</math>. נתבונן בסרטוט משמאל. אם A הוא שטח המעגל הפנימי ו-<math>\Delta A</math> היא תוספת השטח הדרושה ליצירת המעגל החיצוני אזי <math>\Delta A\approx2\pi r\Delta r</math>, ז"א <math>\frac{\Delta A}{\Delta r}\approx\frac{2\pi r\Delta r}{\Delta r}=2\pi r</math>. בגבול <math>\Delta r\to0</math> זה מדוייק: <math>\frac{\mathrm dA}{\mathrm dr}=2\pi r</math>. ההסבר לכך שנגזרת נפח הכדור היא שטח הפנים דומה. לעומת זאת, עבור הריבוע [[קובץ:היקף ריבוע אינו נגזרת השטח.png|100px]] ההיקף הוא <math>4a</math> והשטח - <math>a^2</math>: ההיקף אינו נגזרת השטח. אבל עבור <math>b=\frac a2</math> ההיקף הינו <math>8b</math> והשטח - <math>4b^2</math>, ושוב ההיקף הוא נגזרת השטח.
[[קובץ:היקף מעגל הוא נגזרת השטח.png|ימין|200px]]נשים לב כי שטח עיגול הוא <math>\pi r^2</math> והיקפו <math>\frac{\mathrm d}{\mathrm dr}\pi r^2=2\pi r</math> כמו כן נפח כדור הוא <math>\frac43\pi r^3</math> ושטחו <math>\frac{\mathrm d}{\mathrm dr}\frac43\pi r^3=4\pi r^2</math>. נסביר זאת באמצעות הסרטוט משמאל. אם A הוא שטח המעגל הפנימי ו-<math>\Delta A</math> היא תוספת השטח הדרושה ליצירת המעגל החיצוני אזי <math>\Delta A\approx2\pi r\Delta r</math>, ז"א <math>\frac{\Delta A}{\Delta r}\approx\frac{2\pi r\Delta r}{\Delta r}=2\pi r</math>. בגבול <math>\Delta r\to0</math> זה מדוייק: <math>\frac{\mathrm dA}{\mathrm dr}=2\pi r</math>. ההסבר לכך שנגזרת נפח הכדור היא שטח הפנים דומה. לעומת זאת, עבור הריבוע [[קובץ:היקף ריבוע אינו נגזרת השטח.png|100px]] ההיקף הוא <math>4a</math> והשטח - <math>a^2</math>: ההיקף אינו נגזרת השטח. אבל עבור <math>b=\frac a2</math> ההיקף הינו <math>8b</math> והשטח - <math>4b^2</math>, ושוב ההיקף הוא נגזרת השטח.
 [[קובץ:חישוב שטח פנים של כדור.png|ימין|400px]]נחשב שטח פנים של כדור ללא אינטגרל: עפ"י דימיון משולשים <math>\frac ar=\frac{\Delta x}S</math> ולכן <math>aS=r\Delta x</math>. אותה חתיכת הגרף S מסתובבת סביב ציר ה-x ליצור שטח <math>\pi\left(2a-\sqrt{S^2-(\Delta x)^2}\right)S=2\pi r\Delta x-\pi S\sqrt{S^2-(\Delta x)^2}</math> (כי רדיוסי הבסיסים של החרוט הקטום הם <math>a,a-\sqrt{S^2-(\Delta x)^2}</math>). ז"א, בכל קטע <math>[x_{k-1},x_k]</math> שבו נבנה חרוט קטום ע"י סיבוב קו באורך <math>S</math> יווצר שטח <math>2\pi r\Delta x_k-\pi S\sqrt{S^2-(\Delta xx_k)^2}</math>. כעת, אם נסכם אינסוף קטעים לאורך הקטע <math>[-r,r]</math> כך שלכל קטע <math>\Delta x_k\to0</math> יבנה שטח כולל <math>2\pi r\sum\Delta x-\sum0=2\pi r(2rr-(-r))=4\pi r^2</math>, כפי שציפינו.
</li>
<li>
 
==חישוב עבודה==
בפיזיקה, כאשר כוח <math>\vec F</math> קבוע פועל בקטע באורך s אומרים שהוא עשה עבודה <math>W=\vec Fs</math>. כעת נחשב את העבודה שנעשית ע"י כוח משתנה <math>F(x)</math> לאורך הקטע <math>x\in[a,b]</math> בציר הזמן. נעשה חלוקה <math>P=\{x_0,x_1,\dots,x_n\}</math>. בכל תת קטע <math>[x_{k-1},x_k]</math>, <math>F(x)</math> תקבל מקסימום <math>M_k</math> ומינימום <math>m_k</math> ולכן העבודה הנעשית ע"י F בקטע <math>[x_{k-1},x_k]</math> (נקרא לה <math>W_k</math>) מקיימת <math>m_k\Delta x_k\le W_k\le M_k\Delta x</math>. בסה"כ העבודה לאורך הקטע היא <math>W=\sum_{k=1}^n W_k</math> כאשר <math>\sum_{k=1}^n m_k\Delta x_k\le W\le\sum_{k=1}^n M_k\Delta x_k</math>. יש כאן <math>\underline S(F,P)\le W\le \overline S(F,P)</math> וכאשר <math>\lambda(P)\to0</math> זה שואף לגבול אחד <math>W=\int\limits_a^b F(x)\mathrm dx</math>.