שינויים

משתמש:אור שחף/133 - תרגול/26.6.11

נוסף בית אחד, 20:06, 2 ביולי 2012
/* פתרון */
# נתון שבנוסף קיים <math>\varepsilon>0</math> כך ש-<math>f(x)\ge\varepsilon</math> לכל <math>x\in[a,b]</math>. הוכיחו <math>\frac1f</math> בעלת השתנות חסומה בקטע.
===פתרון===
# נניח ש-P חלוקה של הקטע ונסמן <math>h(t)=f(t)g(t)</math> אזי {{left|<math>\begin{align}v(h,P)&=\sum_{k=1}^n |h(x_k)-h(x_{k-1})|\\&=\sum_{k=1}^n|f(x_k)g(x_k)-f(x_{k-1})g(x_{k-1})|\\&=\sum_{k=1}^n|f(x_k)g(x_k)+f(x_{k-1})g(x_k)-f(x_{k-1})g(x_k)-f(x_{k-1})g(x_{k-1})|\\&\le\sum_{k=1}^n |g(x_k)||f(x_k)-f(x_{k-1})|+\sum_{k=1}^n |f(x_{k-1})||g(x_k)-g(x_{k-1})|\end{align}</math>}}f,g בעלות השתנות חסומה ולכן חסומות. נסמן <math>|f|\le M_f\ \and\ |g|\le M_g</math> ולכן <math>v(h,P)\le M_g\cdot\overset b\underset aV f+M_f\cdot\overset b\underset aV g<\infty</math>. {{משל}}# מתקיים <math>\forall x\in[a,b]:\ \frac1{f(x)}\le\frac1\varepsilon</math> ולכן {{left|<math>\begin{align}v(1/f,P)&=\sum_{k=1}^n\left|\frac1{f(x_k)}-\frac1{f(x_{k-1})}\right|\\&=\sum_{k=1}^n\left|\frac{f(x_{k-1})-f(x_k)}{f(x_k)f(x_{k-1})}\right|\\&\le\frac1{\varepsilon^2}\sum_{k=1}^n|f(x_k)-f(x_{k-1})|\\&=\le\frac1{\varepsilon^2}\overset b\underset aV f\\&<\infty\end{align}</math>}}{{משל}}
==דוגמה 3==