שינויים

משתמש:אור שחף/133 - תרגול/29.5.11

נוספו 491 בתים, 15:41, 20 באוקטובר 2011
/* סכומי טורים */
'''תזכורת:''' (אינטגרציה איבר איבר בסדרות) אם <math>f_n</math> סדרת פונקציות רציפות המתכנסות במ"ש לפונקציה f ב-<math>[a,b]</math>, אז f אינטגרבילית ומתקיים <math>\lim_{n\to\infty}\int\limits_a^b f_n=\int\limits_a^b f</math>. באופן דומה ננסח עבור גזירה איבר-איבר בסדרות: <math>f_n</math> סדרת פונקציות גזירות ורציפות ב-<math>[a,b]</math> המתכנסת בנקודה אחת לפחות <math>x_0\in[a,b]</math> ל-<math>f(x_0)</math>. אם <math>f_n'</math> סדרת פונקציות המתכנסות במ"ש ב-<math>[a,b]</math> אז <math>f</math> גזירה <math>\lim_{n\to\infty} f_n'(x)=f'(x)=\left(\lim_{n\to\infty}f_n(x)\right)'</math>.
באופן דומה נגדיר עבור טורים. עבור אינטגרציה, לדוגמה: יהי <math>\sum_{n=1}^\infty f_n(x)</math> טור של פונקציות רציפות ב-<math>[a,b]</math> המתכנס במ"ש בקטע לפונקצית סכום <math>S(x)</math>, אזי טור המספרים מתכנס ומתקיים <math>\sum_{n=01}^\infty \int\limits_a^b f_n=\int\limits_a^b \sum_{n=01}^\inftyf_n=\int\limits_a^b S</math>.
גזירה איבר איבר של טורי פונקציות: יהיו <math>f_n</math> פונציות גזירות רציפות ב-<math>[a,b]</math> כך שהטור <math>\sum_{n=01}^\infty f_n(x)</math> מתכנס ב-<math>x_0\in[a,b]</math> ל-<math>S(x_0)</math> . אם טור הנגזרות <math>\sum_{n=01}^\infty f_n'(x)</math> מתכנס במידה שווה בקטע אז מתקיים <math>\sum_{n=01}^\infty f_n'(x)=S'(x)=\left(\sum_{n=01}^\infty f_n(x)\right)'</math>.
==דוגמה 1==
==דוגמה 2==
יטופל בהמשך:
<div style="opacity:0.5;">
חשבו את סכום הטור <math>\sum_{n=1}^\infty\frac n{(n+1)x^n}</math> עבור <math>x>1</math>.
===פתרון===
נשים לב כי <math>\frac n{(n+1)x^n}=\frac1{x^n}-\frac1{(n+1)x^n}</math>, ולפיכך מספיק לחשב את <math>\sum_{n=1}^\infty \frac1{x^n}-\sum_{n=1}^\infty \frac1{(n+1)x^n}</math>. ראשית נוכיח שהטור <math>\sum_{n=1}^\infty x^n</math> מתכנס במ"ש ב-<math>(0,1)</math>. יהי <math>0<x_0<1</math> ולכן <math>\left|x^n\right|\le x_0^n</math> לכל <math>\frac1xx\in[0,x_0]</math>. כמו כן <math>\sum_{n=1}^\infty x_0^n</math> מתכנס כי <math>0<x_0<1</math> והטור הנדסי, לכן, ממבחן ה-M של ויירשטראסויירשראס, הטור <math>\sum_{n=1}^\infty x^n=\frac1{1-x}</math> מתכנס במ"ש ב-<math>[0,x_0]</math>. עתה נוכל לעשות אינטגרציה איבר-איבר: <math>\int\limits_0^x\frac{\mathrm dt}{1-t}=\int\limits_0^x\sum_{n=1}^\infty t^n\mathrm dt=\sum_{n=1}^\infty\int\limits_0^x t^n\mathrm dt=\sum_{n=21}^\infty\frac{x^{n+1}}{n+1}</math>. כמו כן, ברור כי <math>\int\limits_0^x\frac{\mathrm dt}{1-t}=[-\ln(|1-t)|]_{t=0}^x=-\ln(1-x)</math>. נשאר לחלק ב, ולכן <math>\sum_{n=1}^\infty \frac{x^n}{n+1}=-\frac1x\ln(1-x ואז לגזור)</math>עתה, אם <math>x>1</divmath>אזי <math>\frac1x\in(0,1)</math> ולבסוף {{left|<math>\begin{align}\sum_{n=1}^\infty\frac n{(n+1)x^n}&=\sum_{n=1}^\infty \frac1{x^n}-\sum_{n=1}^\infty \frac1{(n+1)x^n}\\&=\frac1{1-\tfrac1x}-\left(-\frac1{1/x}\ln\left(1-\frac1x\right)\right)\\&=\frac x{x-1}+x\ln\left(\frac{x-1}x\right)\end{align}</math>}} {{משל}}
==דוגמה 3==
נשים לב שאם נגדיר<math>f_n(x)=\frac1{x^n}</math> אזי <math>f_n'(x)=(x^{-n})'=-n\cdot x^{-n-1}=\frac{-n}{x^{n+1}}</math>. כמו כן <math>\sum_{n=1}^\infty f_n(x)=\sum_{n=1}^\infty \frac1{x^n}=\frac{1/x}{1-1/x}=\frac1{x-1}</math>. נבדוק את התנאים לגזירה איבר-איבר. דרוש ש-<math>\sum f_n'(x)</math> יתכנס במ"ש.
נעזר במבחן ה-M של ויירשראס. אם <math>x>1</math> אז יש <math>1<a<x</math> שם מתקיים ולכן <math>\left|\frac{-n}{x^{n+1}}\right|\le\frac n{a^{n+1}}</math>. הטור <math>\sum_{n=1}^\infty \frac n{a^{n+1}}</math> טור מתכנס עפ"י מבחן המנה של ד'לאמר (או מבחן השורש של קושי).
נסיק שהטור <math>\sum_{n=1}^\infty\frac{-n}{x^{n+1}}</math> מתכנס במ"ש ולכן <math>\left(\sum_{n=1}^\infty \frac1{x^n}\right)'=\sum_{n=1}^\infty \left(\frac1{x^n}\right)'=\sum_{n=1}^\infty \frac{-n}{x^{n+1}}</math> וגם <math>\left(\sum_{n=1}^\infty \frac1{x^n}\right)'=\left(\frac1{x-1}\right)'=\frac{-1}{(x-1)^2}</math>. לסיכום <math>\sum_{n=1}^\infty \frac{-n}{x^{n+1}}=\frac{-1}{(x-1)^2}</math>, ולפיכך <math>\sum_{n=1}^\infty\frac n{x^n}=\frac x{(x-1)^2}</math>. {{משל}}
===פתרון===
אכן מדובר על טור חזקות כי כאשר המקדם הכללי הוא <math>a_n=\frac1\sqrt[3]n</math>. לכן רדיוס ההתכנסות הוא <math>R=\frac1{\displaystyle\limsup_{n\to\infty}\sqrt[n]\tfrac1\sqrt[3]n}=\left(1/\limsup_lim_{n\to\infty}\sqrt[n]n\right)^{-3}=1</math>. ז"א כאשר <math>|x|<1</math> הטור מתכנס. נשאר לבדוק האם יש התכנסות בקצוות <math>x=\pm1</math>. עבור <math>x=1</math> הטור הוא <math>\sum_{n=1}^\infty \frac{1^n}\sqrt[3]n</math>, שמתבדר כי הוא גדול מ-<math>\sum_{n=1}^\infty\frac1n=\infty</math>. עבור <math>x=-1</math> ברור שהטור מתכנס, לפי משפט לייבניץ. לסיכום, תחום ההתכנסות הוא <math>[-1,1)</math>. {{משל}}
==דוגמה 5==
===פתרון===
נשים לב כי הטור הנתון אינו טור חזקות, ולכן "נתקן" אותו. נגדיר <math>a_n=\begin{cases}n&\exists k:\ n=k!\\0&\text{else}\end{cases}</math>. נקבל את הטור <math>\sum_{n=0}^\infty a_n x^n</math>. נשים לב שאכן במקרה הזה נצטרך לחשב <math>\limsup</math> (ולא סתם <math>\lim</math>). <math>1/\limsup_{n\to\infty}\sqrt[n]{a_n}=1/\lim_{n\to\infty}\sqrt[n]n=1/1=1</math> ולכן רדיוס ההתכנסות הוא 1. נבדוק בקצוות: ב-1 הטור הוא <math>\sum_{n=0}^\infty n!\cdot 1^{n!}\to\infty</math>. עבור <math>x=-1</math> הטור הוא <math>\sum_{n=0}^\infty n!(-1)^{n!}</math>, שגם שואף לאינסוף כי <math>n!</math> זוגי לכל <math>n>1</math>. לסיכום, תחום ההתכנסות הוא <math>(-1,1)</math>. {{משל}}