שינויים

משתמש:אור שחף/133 - תרגול/29.5.11

נוספו 5 בתים, 15:41, 20 באוקטובר 2011
/* סכומי טורים */
'''תזכורת:''' (אינטגרציה איבר איבר בסדרות) אם <math>f_n</math> סדרת פונקציות רציפות המתכנסות במ"ש לפונקציה f ב-<math>[a,b]</math>, אז f אינטגרבילית ומתקיים <math>\lim_{n\to\infty}\int\limits_a^b f_n=\int\limits_a^b f</math>. באופן דומה ננסח עבור גזירה איבר-איבר בסדרות: <math>f_n</math> סדרת פונקציות גזירות ורציפות ב-<math>[a,b]</math> המתכנסת בנקודה אחת לפחות <math>x_0\in[a,b]</math> ל-<math>f(x_0)</math>. אם <math>f_n'</math> סדרת פונקציות המתכנסות במ"ש ב-<math>[a,b]</math> אז <math>f</math> גזירה <math>\lim_{n\to\infty} f_n'(x)=f'(x)=\left(\lim_{n\to\infty}f_n(x)\right)'</math>.
באופן דומה נגדיר עבור טורים. עבור אינטגרציה, לדוגמה: יהי <math>\sum_{n=1}^\infty f_n(x)</math> טור של פונקציות רציפות ב-<math>[a,b]</math> המתכנס במ"ש בקטע לפונקצית סכום <math>S(x)</math>, אזי טור המספרים מתכנס ומתקיים <math>\sum_{n=01}^\infty \int\limits_a^b f_n=\int\limits_a^b \sum_{n=01}^\inftyf_n=\int\limits_a^b S</math>.
גזירה איבר איבר של טורי פונקציות: יהיו <math>f_n</math> פונציות גזירות רציפות ב-<math>[a,b]</math> כך שהטור <math>\sum_{n=01}^\infty f_n(x)</math> מתכנס ב-<math>x_0\in[a,b]</math> ל-<math>S(x_0)</math> . אם טור הנגזרות <math>\sum_{n=01}^\infty f_n'(x)</math> מתכנס במידה שווה בקטע אז מתקיים <math>\sum_{n=01}^\infty f_n'(x)=S'(x)=\left(\sum_{n=01}^\infty f_n(x)\right)'</math>.
==דוגמה 1==
ראשית נוכיח שהטור <math>\sum_{n=1}^\infty x^n</math> מתכנס במ"ש ב-<math>(0,1)</math>. יהי <math>0<x_0<1</math> ולכן <math>\left|x^n\right|\le x_0^n</math> לכל <math>x\in[0,x_0]</math>. כמו כן <math>\sum_{n=1}^\infty x_0^n</math> מתכנס כי <math>0<x_0<1</math> והטור הנדסי, לכן, ממבחן ה-M של ויירשראס, הטור <math>\sum_{n=1}^\infty x^n=\frac1{1-x}</math> מתכנס במ"ש ב-<math>[0,x_0]</math>. עתה נוכל לעשות אינטגרציה איבר-איבר: <math>\int\limits_0^x\frac{\mathrm dt}{1-t}=\int\limits_0^x\sum_{n=1}^\infty t^n\mathrm dt=\sum_{n=1}^\infty\int\limits_0^x t^n\mathrm dt=\sum_{n=1}^\infty\frac{x^{n+1}}{n+1}</math>. כמו כן, ברור כי <math>\int\limits_0^x\frac{\mathrm dt}{1-t}=[-\ln|1-t|]_{t=0}^x=-\ln(1-x)</math>, ולכן <math>\sum_{n=1}^\infty \frac{x^n}{n+1}=-\frac1x\ln(1-x)</math>.
עתה, אם <math>x>1</math> אזי <math>\frac1x\in(0,1)</math> ולבסוף {{left|<math>\begin{align}\sum_{n=1}^\infty\frac n{(n+1)x^n}&=\sum_{n=1}^\infty \frac1{x^n}-\sum_{n=1}^\infty \frac1{(n+1)x^n}\\&=\frac1{1-\tfrac1x}-\left(-\frac1{1/x}\ln\left(1-\frac1x\right)\right)\\&=\frac x{x-1}-+x\ln\left(\frac{x-1}x\right)\end{align}</math>}} {{משל}}
==דוגמה 3==