שינויים

משתמש:אור שחף/133 - תרגול/6.3.11

נוספו 496 בתים, 11:28, 14 במאי 2011
/* דוגמה 1 {{הערה|(שיטת פירוק)}} */
# <math>\int\limits_0^5 |x-3|\mathrm dx</math><br/> פתרון: נשים לב להגדרת <math>|x-3|</math> לפיה האינטגרל שווה ל-<math>\int\limits_0^3-(x-3)\mathrm dx+\int\limits_3^5 (x-3)\mathrm dx</math>. גרף (1) מספיק לחשב את השטחים I ו-II. נעשה זאת לפי שטח משולש: עבור I - <math>\int\limits_0^3-(x-3)\mathrm dx=\frac{3\cdot3}2=4.5</math> ועבור II - <math>\int\limits_3^5 (x-3)\mathrm dx=\frac{2\cdot2}2=2</math> ולכן השטח הכולל הוא 6.5. {{משל}}<br />''הערה:'' אם התחום היה, למשל, <math>[4,5]</math> היינו יכולים לחשב לפי שטח טרפז.
# <math>\int\limits_0^{10} \sqrt{10x-x^2}\mathrm dx</math>. פתרון: נבדוק מהו גרף הפונקציה. נסמן <math>y=\sqrt{10x-x^2}\implies y^2=10x-x^2\implies (x-5)^2+y^2=5^2</math>. קיבלנו מעגל - גרף (2). מסימטריות המעגל אפשר לקחת חצי משטח המעגל. <math>\int\limits_0^{10}\sqrt{10x-x^2}\mathrm dx=\frac{25\pi}2+c</math> {{משל}}# <math>\int\limits_a^b\sqrt\frac{4-x^2}2\mathrm dx</math>, כאשר a,b הם גבולות העקומה. פתרון: נסמן <math>y=\sqrt\frac{4-x^2}2\implies \left(\frac y\sqrt2\right)^2+\left(\frac x2\right)^2=0</math>. זוהי אליפסה שמרכזה ב-<math>(0,0)</math>. נסמן <math>a=2,\ b=\sqrt2</math> ולפי נוסחה לשטח אליפסה (<math>\pi a b</math>) נקבל <math>2\sqrt2\pi</math>. האינטגרל הוא מחצית השטח, כלומר <math>\sqrt2\pi</math>. {{משל}}
=האינטגרל הלא מסויים=
{{משל}}
'''באופן כללי:''' נבדוק מה מאפס את המונה ומה מאפס את המכנה (במקרה הזה לא מתאפס ב-<math>\mathbb R</math>). אם מצטמצם ננסה חילוק פולינומים, אחרת נחפס נחפש להציג כקבוע ועוד שארית. דוגמה נוספת: <math>\int\frac{x^2}{x^2+1}\mathrm dx=\int\frac{x^2+1-1}{x^2+1}\mathrm dx</math>.
==דוגמה 2==
<!--
'''באופן כללי:''' בפונקציות מהצורה <math>\sin^n(x)\cos^m(x)</math> (עבור <math>n,m\in\mathbb N</math>) נשתמש בשיטת ההצבה אם <math>m+n</math> אי זוגי, באופן הבא: נציב <math>y=\cossin^\frac{mn+1}2(x)</math> ואז <math>\mathrm dy=\frac{mn+1}2\cossin^{\frac{m+1}2n-1}2(x)\sincos(x)\mathrm dx</math> ולכן <math>\sin^n(x)\cos^m(x)\mathrm dx=\frac2{n+1}\cos^{m-1}(x)\cdot\frac{n+1}2\cdot\sin^\frac{n+1}2(x)\sin^\frac{n-1}2(x)\cos(x)\mathrm dx=\frac2{n+1}y</math>.
אם <math>n+m</math> זוגי ננסה להשתמש בזהויות השונות, כמו
לפי אינטגרציה בחלקים, נגדיר <math>f(x)=x\ \and\ g(x)=e^x</math>. לכן האינטגרל שווה ל-<math>xe^x-\int1e^x\mathrm dx=xe^x-e^x+c</math>. {{משל}}
<!--'''מסקנה:''' לכל פולינום ממעלה <math>n\in\mathbb N</math> כפול פונקציה g שמקיימת (עבור <math>m\in\mathbb N</math> כלשהו) <math>g^{(m)}(x)=g(x)</math> נעשה אינטגרציה בחלקים n פעמים ונקבל את הפתרון.<!--: {{left|<math>\begin{align}\int g(x)\sum_{k=0}^n a_kx^k\mathrm dx&=g^{(m-1)}(x)\sum_{k=0}^n a_kx^k-\int g^{(m-1)}(x)\sum_{k=1}^n a_k\cdot kx^{k-1}\mathrm dx\\&=\dots\\&=\sum_{i=0}^{n-1}(-1)^i g^{(m-i-1)}(x)\sum_{k=i}^n a_k \frac{k!}{(k-i)!}x^{k-i}+(-1)^n\int g^{(m-n)}(x)\mathrm dx\\&=\sum_{i=0}^n(-1)^i g^{(m-i-1)}(x)\sum_{k=i}^n a_k \frac{k!}{(k-i)!}x^{k-i}+c\end{align}</math>}}--></li>
<li><math>\int\ln(x)\mathrm dx</math>
===פתרון===
<math>\int\frac{3^x}\sqrt{1-9^x}\mathrm dx</math>.
===פתרון===
בשיטת ההצבה, <math>y=3^x\implies\mathrm dy=\frac{3^x}{\ln(3)}\cdot3^x\mathrm dx</math> והאינטגרל הנ"ל שווה ל-<math>\frac1{\ln(3)}\int\frac{\mathrm dy}\sqrt{1-y^2}=\frac1{\ln(3)}\arcsin(3^x)+c</math>. {{משל}}
49
עריכות