הבדלים בין גרסאות בדף "משתמש:איתמר שטיין"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(שאלה 3)
(שאלה 1)
שורה 1: שורה 1:
 
*[[משתמש:איתמר שטיין/הסבר הופכי|הסבר על חישוב הופכי ב <math>\mathbb{Z}_p</math>]]
 
*[[משתמש:איתמר שטיין/הסבר הופכי|הסבר על חישוב הופכי ב <math>\mathbb{Z}_p</math>]]
 
==שאלה 1==
 
 
===סעיף א===
 
 
עבור נקודות <math>(x,y,z)\neq (0,0,0)</math> פשוט גוזרים את הפונקציה לפי <math>x</math>
 
 
<math>f_x(x,y,z)=\frac{zy\cos(xy){(x^2+y^2+z^2)}^\frac{1}{3}-\frac{1}{3}{(x^2+y^2+z^2)}^{-\frac{2}{3}}\cdot (2x)\cdot{(z\sin(xy))}}{{(x^2+y^2+z^2)}^\frac{2}{3}}</math>
 
 
 
עבור הנקודה <math>(x,y,z)=(0,0,0)</math> קל לראות ש
 
 
<math>\lim_{t\rightarrow 0}\frac{f(t,0,0)-f(0,0,0)}{t}=\lim_{t\rightarrow 0}\frac{0-0}{t}=0</math>
 
 
 
===סעיף ב===
 
 
 
כמו שראינו בקלות ש <math>f_x(0,0,0)=0</math> קל לראות שגם <math>f_y(0,0,0)=0</math> ו <math>f_z(0,0,0)=0</math>.
 
 
ראשית נוודא ש <math>f</math> רציפה (לא חייבים, אבל בדר"כ שווה לבדוק. כי אם היא לא רציפה אז ברור שהיא לא דיפרנציאבילית).
 
 
נשים לב ש
 
 
<math>|\frac{z\sin(xy)}{{(x^2+y^2+z^2)}^{\frac{1}{3}}}|\leq |\frac{z}{{(x^2+y^2+z^2)}^{\frac{1}{3}}}|\leq
 
|\frac{z}{{(z^2)}^{\frac{1}{3}}}|=|z^{\frac{1}{3}}|\rightarrow 0</math>
 
 
ולכן <math>f</math> רציפה.
 
 
נבדוק דיפרנציאביליות
 
 
צריך לבדוק אם <math>\epsilon (h_1,h_2,h_3)</math> המוגדרת לפי:
 
 
<math>f(h_1,h_2,h_3)-f(0,0,0)=f_x(0,0,0)h_1+f_y(0,0,0)h_2+f_z(0,0,0)h_3+\epsilon(h_1,h_2,h_3)\sqrt{h_1^2+h_2^2+h_3^2}</math>
 
 
מתכנסת ל <math>0</math> בנקודה <math>(0,0,0)</math>.
 
 
במקרה שלנו צריך לבדוק את:
 
 
<math>\lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)}\frac{h_3\sin (h_1 h_2)}{{(h_1^2+h_2^2+h_3^2)}^\frac{1}{3}\cdot {(h_1^2+h_2^2+h_3^2)}^{\frac{1}{2}}}
 
= \lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)}\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2+h_3^2)}^\frac{5}{6}}\frac{\sin(h_1 h_2)}{h_1 h_2}
 
</math>
 
 
היות ו
 
 
<math>\lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)} \frac{\sin(h_1 h_2)}{h_1 h_2} = 1</math>
 
 
נותר לבדוק את
 
 
<math>\lim_{(h_1,h_2,h_3)\rightarrow (0,0,0)}\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2+h_3^2)}^\frac{5}{6}}</math>
 
 
נשים לב ש
 
 
<math>|\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2+h_3^2)}^\frac{5}{6}}|\leq |\frac{h_3 h_1 h_2}{{(h_1^2+h_2^2)}^\frac{5}{6}}|
 
\leq |h_3||\frac{h_1 h_2}{{(2h_1 h_2)}^\frac{5}{6}}|= \frac{1}{2^{\frac{5}{6}}}|h_3||{(h_1 h_2)}^{\frac{1}{6}}|\rightarrow 0
 
</math>
 
 
דרך אחרת (שימושית כאשר יש במכנה דברים בסגנון <math>||h||</math>):
 
 
עוברים לקוארדינטות כדוריות
 
 
<math>h_1 = r\cos \theta \sin \varphi,\quad h_2 = r\sin \theta \sin \varphi ,\quad h_3 = r \cos \varphi</math>
 
 
ואז צריך לחשב גבול
 
 
<math>\lim_{r\rightarrow 0}\frac {r^3 \cos \theta \sin \theta \sin ^2 \varphi \cos \varphi}{{(r^2)}^{\frac{5}{6}}}
 
=\lim_{r\rightarrow 0} {r^{\frac{8}{6}} \cos \theta \sin \theta \sin ^2 \varphi \cos \varphi}=0
 
</math>
 
 
ולכן <math>f</math> דיפרנציאבילית ב <math>(0,0,0)</math>.
 

גרסה מ־19:35, 4 בפברואר 2013