הבדלים בין גרסאות בדף "משתמש:איתמר שטיין"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(שאלה 5)
שורה 3: שורה 3:
  
 
==שאלה 5==
 
==שאלה 5==
 
===סעיף א===
 
 
כמו תמיד בחישוב אינטגרל של ערך מוחלט, צריך לפצל לתחום שבו הפונקציה חיובית ותחום שבו היא שלילית.
 
 
במקרה שלנו <math>\cos(\theta)</math>  היא חיובית כאשר <math>0\leq\theta \leq \frac{\pi}{2}</math> וכאשר
 
<math>\frac{3\pi}{2} \leq\theta \leq 2\pi </math>
 
ושלילית כאשר <math>\frac{\pi}{2}\leq\theta \leq \frac{3\pi}{2}</math>
 
 
כלומר
 
 
<math>\int _0 ^\pi \, \int_0^\pi \, |\cos(x+y)| \mathrm{d}x\mathrm{d}y
 
= \iint \limits_{0\leq x+y \leq \frac{\pi}{2}} \, \cos(x+y) \mathrm{d}x\mathrm{d}y
 
-\iint \limits_{\frac{\pi}{2}\leq x+y \leq \frac{3\pi}{2}} \, \cos(x+y) \mathrm{d}x\mathrm{d}y
 
+\iint \limits_{\frac{3\pi}{2}\leq x+y \leq 2\pi } \, \cos(x+y) \mathrm{d}x\mathrm{d}y</math>
 
 
האינטגרל הראשון הוא:
 
 
<math> \iint \limits_{0\leq x+y \leq \frac{\pi}{2}} \, \cos(x+y) \mathrm{d}x\mathrm{d}y
 
= \int _0 ^\frac{\pi}{2} \, \int_0^{\frac{\pi}{2}-x} \, \cos(x+y) \mathrm{d}y \mathrm{d}x
 
= \int _0 ^\frac{\pi}{2} \, \sin(x+y) \mid_0^{\frac{\pi}{2}-x} \mathrm{d}x
 
</math>
 
 
<math>= \int _0 ^\frac{\pi}{2} \, 1 - \sin(x) \mathrm{d}x
 
= x+\cos(x) \mid_0 ^\frac{\pi}{2} = \frac{\pi}{2} - 1</math>
 
 
באופן דומה האינטגרל השלישי הוא:
 
 
<math> \iint \limits_{\frac{3\pi}{2}\leq x+y \leq 2\pi } \, \cos(x+y) \mathrm{d}x\mathrm{d}y
 
= \int _\frac{\pi}{2} ^{\pi} \, \int_{\frac{3\pi}{2}-x}^{\pi} \, \cos(x+y) \mathrm{d}y\mathrm{d}x
 
= \int _\frac{\pi}{2} ^{\pi} \, \sin(x+y) \mid_{\frac{3\pi}{2}-x}^{\pi} \mathrm{d}x
 
</math>
 
 
<math>
 
= \int _\frac{\pi}{2} ^{\pi} \, \sin(x+\pi) +1 \mathrm{d}x  = -\cos(x+\pi)+x \mid_\frac{\pi}{2} ^{\pi} = -1+\pi - \frac{\pi}{2}
 
= -1+ \frac{\pi}{2}
 
</math>
 
 
את האינטגרל השני צריך לפצל
 
 
<math>
 
\iint \limits_{\frac{\pi}{2}\leq x+y \leq \frac{3\pi}{2}} \, \cos(x+y) \mathrm{d}x\mathrm{d}y
 
=
 
\int _0 ^{\frac{\pi}{2}} \, \int_{\frac{\pi}{2}-x}^{\pi} \, \cos(x+y) \mathrm{d}y\mathrm{d}x+
 
\int _\frac{\pi}{2} ^{\pi} \, \int_0^{\frac{3\pi}{2}-x} \, \cos(x+y) \mathrm{d}y\mathrm{d}x
 
</math>
 
 
<math>
 
=
 
\int _0 ^{\frac{\pi}{2}} \, \sin(x+y) \mid_{\frac{\pi}{2}-x}^{\pi} \mathrm{d}x+
 
\int _\frac{\pi}{2} ^{\pi} \, \sin(x+y) \mid_0^{\frac{3\pi}{2}-x} \mathrm{d}x
 
=
 
\int _0 ^{\frac{\pi}{2}} \, \sin(x+\pi) - 1 \mathrm{d}x
 
\int _\frac{\pi}{2} ^{\pi} \, -1 -\sin(x) \mathrm{d}x
 
</math>
 
 
<math>
 
=
 
-\cos(x+\pi) - x \mid_0 ^{\frac{\pi}{2}}+
 
-x +\cos(x) \mid_\frac{\pi}{2} ^{\pi}
 
=
 
-\frac{\pi}{2}-1 -\pi -1 + \frac{\pi}{2} = -2-\pi
 
</math>
 
 
לכן הפתרון בסך הכל הוא:
 
 
<math>\frac{\pi}{2}-1 +2+\pi +\frac{\pi}{2}-1=2\pi</math>
 

גרסה מ־06:38, 15 בפברואר 2013


שאלה 5